Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Multivariate statistics"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Topics in Multivariate Statistics with Dependent Data
    (2019-02) Ekvall, Karl Oskar
    This dissertation comprises four chapters. The first is an introduction to the topics of the dissertation and the remaining chapters contain the main results. Chapter 2 gives new results for consistency of maximum likelihood estimators with a focus on multivariate mixed models. The presented theory builds on the idea of using subsets of the full data to establish consistency of estimators based on the full data. The theory is applied to two multivariate mixed models for which it was unknown whether maximum likelihood estimators are consistent. In Chapter 3 an algorithm is proposed for maximum likelihood estimation of a covariance matrix when the corresponding correlation matrix can be written as the Kronecker product of two lower-dimensional correlation matrices. The proposed method is fully likelihood-based. Some desirable properties of separable correlation in comparison to separable covariance are also discussed. Chapter 4 is concerned with Bayesian vector autoregressions (VARs). A collapsed Gibbs sampler is proposed for Bayesian VARs with predictors and the convergence properties of the algorithm are studied. The Markov chain generated by the algorithm is proved to be geometrically ergodic, regardless of whether the number of observations in the VAR is small or large in comparison to the order and dimension of the VAR. It is also established that the geometric convergence rate is bounded away from one as the number of observations tends to infinity.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues