Browsing by Subject "Modular GPS"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Accuracy of a Modular GPS/GLONASS Receiver(University of Minnesota Duluth, 2018) Joyce, Michael; Moen, RonaldOne of the main factors that affect GPS location accuracy is the type of GPS receiver being used. In general, more expensive receivers (e.g., mapping-grade or survey-grade receivers) provide better accuracy, and GPS users must balance GPS receiver cost with location accuracy when determining which receiver to use. Applications of GPS often require use of GPS receivers in less than ideal conditions while GPS manufacturers often report accuracy specifications that can be expected under ideal conditions. Forest canopies reduce GPS accuracy by interfering with signal transmission between GPS satellites and the GPS receiver and causing multipath errors. When GPS receivers are to be used in forest conditions and accuracy thresholds must be met, it is important to conduct accuracy testing in forest conditions rather than relying on accuracy specifications provided by the manufacturer. We tested the accuracy of the SXBlue II + GNSS, a modular, mapping-grade GPS receiver, under forest canopies in northeastern Minnesota. We estimated cumulative accuracy to evaluate the relationship between collection period and accuracy. GPS test sites covered a range of canopy conditions. We compared accuracy among sites to determine how canopy closure influenced location accuracy. Finally, we compared post-hoc methods to evaluate accuracy based on characteristics of the sites and acquired GPS fixes. The SXBlue II + GNSS receiver typically provided meter or sub-meter accuracy, even under forest canopy. Maximum accuracy was achieved after 10-30 minutes. Accuracy was lower at sites with higher canopy closure values. In sites with canopy closure >65%, maximum accuracy was reduced to 1.5 m. Post-hoc filtering to remove outliers did not improve accuracy. There was a strong, positive relationship between 50% CEP, a measure of location precision, and accuracy, suggesting that 50% CEP can be used for post-hoc accuracy assessment. Our results suggest that the SXBlue II + GNSS provides sufficient accuracy for a wide range of applications, including those that require GPS location measurement in forest conditions.Item Accuracy of a Modular GPS/GLONASS Receiver(University of Minnesota Duluth, 2018) Joyce, Michael; Moen, RonaldOne of the main factors that affect GPS location accuracy is the type of GPS receiver being used. In general, more expensive receivers (e.g., mapping-grade or survey-grade receivers) provide better accuracy, and GPS users must balance GPS receiver cost with location accuracy when determining which receiver to use. Applications of GPS often require use of GPS receivers in less than ideal conditions while GPS manufacturers often report accuracy specifications that can be expected under ideal conditions. Forest canopies reduce GPS accuracy by interfering with signal transmission between GPS satellites and the GPS receiver and causing multipath errors. When GPS receivers are to be used in forest conditions and accuracy thresholds must be met, it is important to conduct accuracy testing in forest conditions rather than relying on accuracy specifications provided by the manufacturer. We tested the accuracy of the SXBlue II + GNSS, a modular, mapping-grade GPS receiver, under forest canopies in northeastern Minnesota. We estimated cumulative accuracy to evaluate the relationship between collection period and accuracy. GPS test sites covered a range of canopy conditions. We compared accuracy among sites to determine how canopy closure influenced location accuracy. Finally, we compared post-hoc methods to evaluate accuracy based on characteristics of the sites and acquired GPS fixes. The SXBlue II + GNSS receiver typically provided meter or sub-meter accuracy, even under forest canopy. Maximum accuracy was achieved after 10-30 minutes. Accuracy was lower at sites with higher canopy closure values. In sites with canopy closure >65%, maximum accuracy was reduced to 1.5 m. Post-hoc filtering to remove outliers did not improve accuracy. There was a strong, positive relationship between 50% CEP, a measure of location precision, and accuracy, suggesting that 50% CEP can be used for post-hoc accuracy assessment. Our results suggest that the SXBlue II + GNSS provides sufficient accuracy for a wide range of applications, including those that require GPS location measurement in forest conditions.