Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Magnetization dynamics"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Data for Magnetization dynamics in synthetic antiferromagnets with perpendicular magnetic anisotropy
    (2023-11-09) Huang, Dingbin; Zhang, Delin; Kim, Yun; Wang, Jian-Ping; Wang, Xiaojia; wang4940@umn.edu; Wang, Xiaojia; Materials Research Science & Engineering Center
    This repository contains data along with associated output from instrumentation supporting all results reported in Huang, D.; Zhang, D.; Kim, Y; Wang, J.P.; and Wang X. Magnetization dynamics in synthetic antiferromagnets with perpendicular magnetic anisotropy. Phys. Rev. B., 2023, 107, 214438. The magnetization dynamics of the perpendicular synthetic antiferromagnets (p-SAFs) sample is detected by time-resolved magneto-optical Kerr effect (TR-MOKE), which is ultrafast-laser-based metrology utilizing a pump-probe configuration. In TR-MOKE, pump laser pulses interact with the sample, initiating magnetization dynamics in magnetic layers via inducing ultrafast thermal demagnetization. The laser-induced heating brings a rapid decrease to the magnetic anisotropy fields and interlayer exchange coupling (IEC), which changes equilibrium direction of magnetization in each layer and initiates the precession. The magnetization dynamics due to pump excitation is detected by a probe beam through MOKE. In our setup, the incident probe beam is normal to the sample surface (polar MOKE); therefore, the Kerr rotation angle (θ_K) of the reflected probe beam is proportional to the z component of the magnetization.
  • Loading...
    Thumbnail Image
    Item
    Magnetic vortex dynamics: non-linear dynamics, pinning mechanisms, and dimensionality crossover.
    (2012-01) Chen, Te-Yu
    The dynamics of a magnetic vortex, which is the simplest realization of a domain structure, are influenced profoundly by non-linear effects at both large and small amplitudes. For example, a strongly driven magnetic vortex is unstable with respect to internal deformation, leading to reversal of its core magnetization. At small amplitudes, a second class of non-linear phenomena are associated with pinning of the vortex core. The pinning of magnetic vortices is closely related to the pinning of domain walls in ferromagnetic films. For both cases, however, the absence of an appropriate characterization tool has limited the ability to correlate the physical and magnetic microstructures of ferromagnetic films with specific pinning mechanisms. Given this range of phenomena, there is also an acute need for a global picture of vortex dynamics over a wide range of excitation amplitudes and frequencies. In this dissertation, I show a global phase diagram of vortex dynamics in permalloy (Ni80Fe20) disks by probing the response spectrum over four orders of magnitude in excitation power. A clear boundary separates pinned and unpinned dynamics in a phase space of amplitude and frequency. I also discuss a highly quantitative analysis of the pinning potential for defects, and how it can be used to trace the dynamics of a single vortex from deep in the pinning regime to the onset of core reversal. Regarding the pinning mechanism, I show that the pinning of a magnetic vortex is strongly correlated with surface roughness, and I make a quantitative comparison of the pinning energy and spatial range in films of various thickness. The results demonstrate that thickness fluctuations on the lateral length scale of the vortex core diameter, i.e., an effective roughness at a specific length scale, provide the dominant pinning mechanism. I argue that this mechanism will be important in virtually any soft ferromagnetic film. Finally, I show the dynamics of a magnetic vortex cross over from two-dimensional (2D) to three-dimensional (3D) with increasing disk thickness. A 2D mode of the vortex dynamics is the lowest frequency excitation below the crossover region, above which a 3D mode becomes the lowest frequency excitation.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues