Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Machine learning potentials"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Neural Network Potentials for Atomistic Simulations of Reactive Chemistry
    (2024-05) Gordon, Adrian
    Atomistic simulations play an important role in a wide range of chemical investigations, including studies of chemical kinetics. These simulations rely on accurate energies and forces, often obtained through expensive ab initio electronic structure calculations. Recently researchers have explored the use of machine learning models to provide analytical and differentiable potential energy surfaces for use in atomistic simulations. These ML models can provide energies at a fraction of the cost of ab initio methods and are also highly accurate within the chemical space represented in the training data. In this work, we explore methods for data sampling techniques for training datasets used to train ML potentials, specifically to calculate chemical kinetics of the OH+ CH4 hydrogen abstraction reaction. In addition, combined ML and molecular mechanics methods for condensed phase reactions is discussed.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues