Browsing by Subject "Le Sueur River Watershed"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Identifying critical portions of the landscape for water quality protection using GIS terrain analysis.(2009-11) Galzki, Jacob CraigTerrain attributes can be calculated using readily available digital elevation models (DEMs) and Geographic Information System (GIS) software. This study investigates the effectiveness of using terrain attributes to identify different critical source areas of contaminants on the landscape. A full suite of terrain attributes were calculated using 3 and 30-meter resolution DEMs for areas within the Le Sueur River Watershed in south central Minnesota, a watershed known to contribute disproportionate amounts of sediments and nutrients to the Minnesota River. Terrain attributes employed throughout this study included slope (S), flow accumulation (FA), compound topographic index (CTI), and stream power index (SPI). Thresholds applied to these attributes combined with ancillary GIS data, such as SSURGO soil data, resulted in spatial data layers identifying critical areas on the landscape. These critical areas accumulate flow along with associated contaminants and are hydrologically connected to nearby surface waters. Field visits aided in determining attribute thresholds and data layer combinations. Low resolution DEMs were useful for delineating critical portions of the landscape that were controlled by broad landscape patterns, such as artificially drained upland depressions. High resolution DEMs were useful for delineating critical areas at the sub-field scale, such as ephemeral gullies. Terrain analysis using a combination of low and high resolution DEMs can rapidly identify critical landscape areas at various spatial scales for water resource protection, and best management practices (BMPs) can be applied to these critical areas to mitigate their detrimental effects on surface water quality.Item Swat modeling of sediment, nutrients and pesticides in the Le-Sueur River watershed, south-central Minnesota.(2010-01) Folle, Solomon MuletaThe Le Sueur River Watershed (LRW) of South-Central Minnesota drains 2,850 km² in the Minnesota River Basin. The watershed has an annual discharge of 230 mm and generates significant sediment and chemical pollution. The objective of this study was to quantify the spatial and temporal patterns of sediment, nutrient (nitrate-nitrogen, phosphorus) and pesticide (atrazine, acetochlor and metolachlor) losses from the LRW using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated from 2000-2006 in the Beauford sub-watershed. The calibrated model was applied to the entire LRW mainly to identify critical pollutant contributing areas and to evaluate effectiveness of alternative best management practices to reduce the loadings. The study has five major parts. The first part deals with hydrologic simulation. The second part identifies the relative contribution of upland and channel sediment sources. The third part deals with water quality impacts of land use and management alternatives on phosphorus and nitrogen losses to the LRW. The fourth part deals with pesticide losses. The fifth part deals with impacts of various biofuel production options on water quality. The LRW has estimated annual loadings of 1.0 kg TP/ha, 18 kg NO3-N/ha and 302,000 t/yr of sediment that contribute to water quality impairments in Lake Pepin and the Mississippi River. Alternative management practices are predicted to reduce upland sediment yield by up to 54%, nitrate-N losses by 22%, and phosphorus loadings by 64%. Overall, the SWAT model was able to accurately simulate the hydrology and transport of chemical pollutants under the land use systems, climate, hydrologic and physiographic settings of South-Central Minnesota.