Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Lane guidance system"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    A High Accuracy Vehicle Positioning System Implemented in a Lane Assistance System when GPS Is Unavailable
    (Center for Transportation Studies, University of Minnesota, 2011-07) Arpin, Eddie; Shankwitz, Craig; Donath, Max
    The use of lane assistance systems can reduce the stress levels experienced by drivers and allow for better lane keeping in narrow, bus-dedicated lanes. In 2008, the Intelligent Vehicles (IV) Lab at the University of Minnesota has developed such a system for this purpose. The IV Lab lane-assist system uses dual frequency differential GPS (DGPS) for high accuracy position information. This position information is used in conjunction with a geospatial database containing the road geometry and lane boundary positions required for a lane-assistance system. In urban environments, where tall buildings, overpasses, and other obstructions to the sky are present, DGPS suffers from inaccuracies and outages. This report proposes a method for replacing DGPS sensing with a high accuracy vehicle positioning system which fuses data from RFID (Radio Frequency IDentification) and LiDAR (Light Detection and Ranging) curb detection. A Vehicle Positioning System (VPS) was originally developed by the IV Lab to provide the lane level ("which lane on the road") position of a vehicle with respect to a known reference (i.e., a mile marker or start of roadway) by the use of encoded position information in RFID tags on the roadway, read by the vehicle. The lateral position resolution of VPS is constrained to one lane width, which is insufficient for lane-assistant systems. Thus, in-lane level ("where in the lane") lateral position estimation was supplemented by a LiDAR unit that generates an accurate position of the vehicle with respect to the curb, which is cross referenced with a map database that provides the distance from the lane center to the curb, thus providing the vehicle's lateral offset from the lane center. On-board odometry is used to maintain accurate longitudinal position in between tag reads. By fusing the information from the VPS, LiDAR, and on-board odometry, high accuracy, "where in lane" level vehicle positioning can be maintained from this enhanced VPS during DGPS outages.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues