Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Hydrocarbon receptor"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Mechanisms of early hemato-endothelial development from human pluripotent stem cells
    (2016-09) Angelos, Mathew George
    Hemogenic endothelium is a highly specialized population of vascular endothelial cells that produces hematopoietic stem cells (HSCs) during embryonic development. This process, referred to as the endothelial-to-hematopoietic transition (EHT), is critical to establish a functional hematopoietic system that persists throughout adulthood. The underlying genetic and cell signaling mechanisms that regulate human EHT remain poorly defined. Human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) provide a well-defined cellular platform that can be used to study these mechanisms. In this work, functional human hemogenic endothelium was identified and isolated from the earliest hemato-endothelial cells differentiated from hESCs. Analysis of hemogenic endothelial cells at a single-cell resolution found hESC-derived hemogenic endothelium was transcriptionally distinct from vascular endothelial cells lacking hematopoietic potential. Novel genetic markers distinguishing human hemogenic endothelium are also presented. Contributions from the aryl hydrocarbon receptor (AHR), an important cell signaling molecule in HSC biology, were also assessed at the level of human EHT. Small molecule inhibition and gene deletion of AHR significantly improved functional hematopoietic stem and progenitor cell development from hESCs. Importantly, a novel role for AHR in the development of hESC-derived innate lymphoid cells is also presented. Collectively, this dissertation identifies and describes key transcriptional and signaling mechanisms that support human EHT. This information will be useful to optimize the development of HSCs and other hematopoietic lineages that are suitable for future clinical application.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues