Browsing by Subject "Hibtac"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Investigation in Production of Iron Ore Concentrates with Less Than 3 Percent Silica from Minnesota Taconites – Report Three – Hibtac Concentrate: A Final Report(University of Minnesota Duluth, 1991) Benner, Blair R; Bleifuss, Rodney LItem Investigation into Production of Iron Ore Concentrates with less than 3 percent Silica from Minnesota Taconites Report Two · Erie Concentrate(University of Minnesota Duluth, 1991-06) Benner, Blair R; Bleifuss, Rodney LThe pellets produced by Minnesota taconite companies generally contain between 4.0 and 7.0 percent silica. These silica levels were established initially by the concentratability of the ore, that is, its response to closed circuit ball mill grinding and magnetic concentration. Those operations that had taconite that was easy to concentrate generally produced lower silica pellets. As processing technology improved and it became possible to achieve lower silica levels constraints imposed by the blast-furnace operation became limiting. These constraints related primarily to sulphur and alkali levels in the furnace which control both the volume and chemistry of the furnace slag. Because the trend in blast-furnace practice has been to move toward lower slag volumes, pellets with lower silica levels have become more desirable. Recent extensive installation of external hot metal desulphurization facilities at many steel works allows even lower slag volumes. The basic driving force to go to lower slag volumes is the cost and availability of high quality metallurgical grade coke and related environmental problems. The recent move to produce fluxed pellets has made lower pellet silica levels more attractive because of the lower palletizing costs related to both the lower flux addition and higher production rates with a lower silica content. A common target silica level in fluxed pellets is now about 4.0 percent. A 4.0 percent silica pellet requires a concentrate containing between 3.7 and 3.9 percent silica depending upon bentonite addition levels. This lower silica level has been accomplished in some plants by the use of fine screens, while other plants require the use of silica flotation. The lower silica level has been accomplished at a relatively small incremental cost, generally less than $0.50 per ton. With increasing pressure from the blast furnaces for lower-silica pellets to reduce coke consumption, concentrate silica levels on the order of 3.0 percent may be common in the future. In addition to the need to produce a lower silica blast-furnace feed, there is a potential need to produce even lower silica concentrates, below 3.0 percent, as feed stock for direct steelmaking. Worldwide the current research emphasis is on the development of a coal-based direct-steelmaking process to replace the conventional two step, blast furnace-basic oxygen furnace, process. Most of the current prototype direct steel making processes would benefit from a lower silica feed. These low silica levels will require increasingly complex and expensive secondary treatment of normal magnetic concentrates which exceed the capability of current taconite processing flowsheets. The purpose of this test program is to establish the lower silica limits that can be achieved by current technology for various Minnesota taconites and gain a preliminary indication of the cost.Because the magnetite concentrates produced by different taconite plants range significantly in terms of their size-silica relationships the program included three different concentrate sources for evaluation. Major differences will exist between concentrates produced in a fully autogenous grinding system and those produced in a conventional rod mill-ball mill circuit in which the ball mills are closed with hydrocyclones and/or a combination of hydrocyclones and fine screens. There are also differences in the nature of the siliceous gangue minerals in the various operations. The concentrates from the western Mesabi range contain quartz and low- grade metamorphic iron silicates such as minnesotaite, stilpnomelane, and talc and iron carbonates. The concentrates from the east Mesabi metamorphosed iron formation contain high grade metamorphic iron silicates such as cummingtonite, grunerite, and fayalite as well as quartz. The type of gangue mineral greatly affects the ability to upgrade the concentrates by silica flotation. The purpose of this test program is to determine the lowest silica content that it is technically possible to produce from three different concentrate sources representing the east Mesabi metamorphosed iron formation (Erie), the unmetamorphosed central range produced in a rod mill and ball mill circuit (Minntac), and the unmetamorphosed western Mesabi produced in an autogenous milling circuit (Hibtac). Sufficient data were collected to allow preliminary cost estimates to be made at several silica levels. The cost estimates will be based on reagent consumption, regrind power and metal requirements, and iron recovery. This report contains all of the information obtained on the Erie samples. This includes the results of the initial characterization studies, basic bench scale beneficiation test results, pilot plant flotation data, and the results of the secondary and tertiary treatment of bulk flotation froth to improve overall iron recovery.Item Mercury Distribution around Taconite Concentrators(University of Minnesota Duluth, 2003-12-09) Benner, Blair RSources of mercury in the environment have become an area of concern for the various regulatory agencies. Taconite production has been identified as one of the sources. Previous programs have indicated that the majority of the mercury in the ore is rejected to the tailings basins, but it appeared that some plants rejected a greater portion than other plants. The purpose of this study was to determine if the differences in mercury rejection were ore related or flowsheet related. Samples were taken around the various concentrator unit operations from !spat-Inland, National Steel Pellet Company, Evtac, Hibtac, and Minntac. The sampling program was not designed to provide definitive mercury balances around the concentrator, but rather to provide a "snapshot" of what was happening with each unit operation. Each unit operation was sampled so that the feed was taken first, followed quickly by simultaneous sampling of the concentrate and tails. This sampling should provide a good balance around each unit operation. The sampling protocol, potential error sources, and measures to minimize the various potential errors are discussed. All of the samples were analyzed for total iron, Satmagan iron, silica, alumina, calcium, magnesium, manganese and sulfur at the Coleraine Minerals Research Laboratory (CMRL). A split of each sample was sent to Frontier Geosciences for total mercury analyses and sequential extraction mercury analyses on the feed, coarse tails, fine tails and concentrate samples from each plant. The sequential extraction is supposed to give an indication of the mercury compounds present. It was anticipated that the sequential extraction method could be used to determine if different plants had different forms of mercury in their ore and if different mercury compounds behaved differently during concentration. The first stage of extraction uses DI water; the second stage uses a pH 2 solution; the third stage uses lN KOH; the fourth stage uses 12N nitric acid; and the fifth and final stage uses aqua regia. The mercury content in the plant crude ore feeds ranged from a low of 9.44 ppb to 27.90 ppb. The plant concentrates ranged from a low of 6.19 ppb to a high of 16.10 ppb. There appeared to be no relationship between the mercury in the feed and the mercury in the concentrate. The standard Excel correlation program was run to relate the various elements to the mercury analyses. For all plants the correlation coefficients for sulfur and mercury content were greater than 0.8 and were greater than 0.9 for four of the five plants. As would be expected, the mercury content correlated positively with the gangue elements and negatively with the iron and magnetic iron analyses. This indicates a selective rejection of mercury to the tails and suggests that the mercury is not associated with the magnetite. The sequential extractions indicated no significant leaching of mercury in either the water or pH 2 solution. This indicates that there is no easily solubilized mercury present in the ore and that the mercury rejected to the tailings should not leach into the water. The sequential extractions indicated no obvious differences in the feed to the five plants. There is some question as to whether the sequential extraction is reflecting different mercury forms or is just indicating the difficulty in extracting mercury from the mineral lattices. The sequential extractions indicated no differences in plant performances.Item Production of Low-Silica Concentrates from Mesabi Taconite(University of Minnesota Duluth, 1993) Benner, Blair R