Browsing by Subject "Galfenol"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Controlled electrochemical synthesis of giant magnetostrictive iron-gallium alloy thin films and nanowires.(2012-04) Reddy, Kotha Sai MadhukarMagnetostrictive Galfenol (Fe1-xGax, x = 10% - 40%) alloys have generated tremendous interest in recent times because of their potential as functional materials in various micro- and nano-electromechanical systems (MEMS/NEMS)-based transducers and sensors. Among the giant magnetostrictive alloys, Terfenol-D (Tb1-xDyxFe2) has the largest magnetostriction, but its brittle nature limits its applications. In contrast, the next best magnetostrictive alloy, Galfenol, is highly malleable and ductile while having the tensile strength of Iron. Electrochemistry is an economical route to fabricate 'very thick' films (upto several microns) or high-aspect ratio structures like nanowire arrays. However, the highly electropositive nature of gallium makes it very difficult to electrodeposit from aqueous solutions, similar in behavior to other non-ideal elements like molybdenum, phosphorus, tungsten etc. As a result, Fe1-xGax alloy plating has been severely plagued by non-repeatability in compositions from growth to growth, lack of uniformity in filling of pores when growing nanowires in nanoporous templates, undesired secondary hydrogen evolution reactions etc. In this study, a thorough understanding of the complex interplay between various deposition parameters (pH, overpotential, concentration, hydrodynamic conditions) was achieved, leading to an understanding of the deposition mechanism itself, thus allowing excellent control and ability to tune the alloy compositions. Arrays of nanowires were fabricated with alternating segments of the magnetostrictive alloy Fe1-xGax and Cu in nanoporous anodic aluminum oxide (AAO) templates. A novel rotating disk electrode-template (designed in-house) was used to optimize the nanowire length distributions by controlling the various aspects of electrodeposition like nucleation, kinetics and mass-transfer. Extensive structural characterization was done by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM), and magnetic characterization by vibrating sample magnetometry (VSM). Furthermore, of excellent promise in semiconductor spintronics, the feasibility of fabricating epitaxially nucleated Fe1-xGax thin films on GaAs having the desired (001) texture was demonstrated. Structural characterization using microdiffraction, high resolution ω - 2θ and rocking curve analysis revealed that the films grown on GaAs(001) are highly textured with <001> orientation along the substrate normal, and the texture improved further upon annealing at 300 °C for 2 hours in N2 environment. This was in contrast to films grown on polycrystalline brass substrates which exhibited undesired <011> texture out-of-plane. Rocking curve analysis on Fe1-xGax/GaAs structures further confirmed that the <001> texture in the Fe1-xGax thin film was indeed due to epitaxial nucleation and growth. A non-linear current-voltage plot was obtained for the Fe1-xGax/GaAs Schottky contacts, characteristic of tunneling injection, and showed improved behavior with annealing.Item Development and Characterization of Magnetostrictive GaFe and Plasmonic Gold Thin Films(2015-04) Estrine, EliotAs device sizes continue to shrink into the nano-scale, material development becomes increasingly important. This presents new deposition and characterization challenges which must be overcome to produce the next generation of devices. Magnetostrictive GaFe (galfenol) is one such material in which development of deposition and characterization techniques is necessary to enable new MEMS devices. In addition, plasmonic gold Near Field Transducers (NFTs) used in Heat Assisted Magnetic Recording (HAMR) require new characterization options to understand device failure modes as well as new gold deposition processes to improve device reliability. While these applications are very different, the underlying material deposition and characterization challenges involving thin film crystallinity are very similar. Magnetostriction measurements of electrodeposited galfenol show that it is possible to achieve thin films of this material over a wide range of compositions using electrodeposition. In addition, grain refinement in gold was achieved through alloying which shows the potential to create more robust thin films while maintaining gold's desirable plasmonic properties. Finally, advanced characterization processes using Electron Back Scatter Diffraction (EBSD) were also developed to analyze thin film crystal structure and its role in NFT stability. These results will further progress in the fields of MEMS and HAMR as well as provide the basis for identifying and solving materials challenges in the future.Item Electrochemical Deposition of Magnetics Based Sensors(2019-12) Hein, MatthewWithin the context of this thesis, advancements in sensor technology are driven in three separate applications. In each application electrochemistry is used as one of the primary fabrication steps, and magnetic phenomena are sensed in order to convey information about the different systems. The medical device industry is an area where various sensors are seeing increased use. Electromagnetic catheter tracking is an application that depends on high-quality magnetic sensors. The size of the sensor is a significant design constraint in catheters. Investigation of a microfabricated inductive sensor is pursued in chapter 4 of this thesis. High shape anisotropy inductive structures utilizing etched aluminum oxide as electroplating templates are investigated through first-order modeling and fabrication process development. Results show that the AAO is capable of producing high aspect ratio inductive structures though further development would be needed to achieve the consistency in etching required for large scale device fabrication. Biomimetic devices are another area of scientific interest where magnetics can play a role. Electroplated magnetic nanowires can act like large arrays of cilia. In chapter 5, biomimetic nanowire arrays are fabricated into microfluidic channels, and their movement sensed via a magnetic sensor. The nanowires provide a magnetic field that bends as fluid flows through the channel which enables a simple flow measurement through microfluidic channels. Similarly, a low frequency (>10Hz) vibration sensor is demonstrated utilizing a nanowire array above a magnetic sensor. Vibration of the sensor imparts momentum on the nanowires, which bend and leads to a time-varying field. In chapter 6, electrodeposition of Galfenol on a cylindrical surface is demonstrated for the first time. Galfenol has a large magnetostriction constant up to ~400 ppm. Utilizing a rotating cylinder electrode, the parameters to deposit Fe1-xGax films in the x = 15 to 35 range were found. The film's magnetostriction was then demonstrated as part of a torque sensor where magnetic anisotropy was controlled through texturing of the cylinder surface. The effect of magnetic shape anisotropy can be seen to play a significant role in the sensor's output by increasing the sensitivity of the sensor nearly 6x that of the non-textured film.