Browsing by Subject "Fond du Lac Reservation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Fond du Lac Resource Management: 2008 Integrated Resource Management Plan(2008) Fond du Lac Band of Lake Superior ChippewaThis very comprehensive document was reviewed and is felt to have significant content and analysis relevant to Minnesota’s coastal area and water resources. It also contains biophysical and watershed-related content directly relevant to Native communities in Minnesota’s coastal communities. Key content is reproduced below: Executive summary: “This Integrated Resource Management Plan contains information about the Band’s past and current management activities and identifies resources that need additional management. The Integrated Resource Management Plan contains alternatives to resource management, as required by the National Environmental Policy Act, which are based on the management objectives. Management activities range from no action to full implementation, and the alternatives presented reflect that range. The objectives that can be completed under each alternative are displayed in a table located at the end of discussion on alternatives. Public input was solicited on the draft document, which included a variety of management alternatives. Comments obtained from the community and tribal government were incorporated into the final document, and the hearing process provided a basis for the formulation and selection of the preferred alternative. The preferred alternative is officially approved by Resolution # 1183/08. Each resource is described in a narrative that was developed in the following format: o Description of the affected environment o Background for that resource o Issues, concerns, and opportunities for that resource o Goals and objectives for that program, with different management alternatives The final chapter is a summary of the alternatives. The preferred alternative is identified for each resource.” Approximately 15 pages of this report are dedicated specifically to water-based resources, including chapters on wild rice, wetlands and water, and fisheries. Some sections are reproduced below. Wild Rice There are five primary wild rice lakes on the Fond du Lac Reservation. The total area on which wild rice is currently present on these lakes is 843 acres. The wild rice areas on the individual lakes are: Perch Lake, 411 acres; Mud Lake, 151 acres; Rice Portage Lake, 131 acres; Jaskari Lake, 79 acres; and Deadfish Lake, 71 acres. These lakes are all within the Stoney Brook Watershed, which is tributary to the St. Louis River. Wild rice is also present in Side Lake, Cedar Lake, Wild Rice Lake, Simian Lake, and Hardwood Lake. Side Lake and Hardwood Lake are within the Stoney Brook Watershed. Cedar Lake and Simian Lake are within the Simian Creek Watershed. Wild Rice Lake is the headwaters of the Moosehorn River, a tributary of the Kettle River. The density of mature wild rice varies from season to season, as the ecology of wild rice growth is related to cycles of plant decomposition, the number of growing days, and available nutrients. In addition, wild rice is easily lost as a result of natural events, such as high winds, flooding, and hail. The majority of the wild rice resource on the Fond du Lac Reservation is in the Stoney Brook Watershed. Beginning in 1916, the Stoney Brook Watershed was adversely affected by the creation of a network of judicial ditches. These judicial ditches drastically altered the hydrology of the watershed, resulting in the loss of over 500 acres of wild rice habitat. The lower water levels that resulted from the judicial ditching allowed competing vegetation to encroach on areas that at one time supported wild rice. Besides the Stoney Brook Watershed, wild rice resources in other areas of the Fond du Lac Reservation are in decline as well. The reason for this decline is primarily due to higher water levels, caused by road building and beaver activity. The Fond du Lac Natural Resources Program is responsible for the wild rice management and restoration activities on the Fond du Lac Reservation. The primary method of wild rice lake management consists of utilizing water control structures (dams) to stabilize water levels, ditch maintenance, and beaver dam management. The restoration of the major wild rice lakes on Fond du Lac is dependent on restoring the lakes to their historical elevation and a more natural annual hydrological cycle. The implementation of the Rice Portage Wild Rice and Wetland Restoration Project resulted in the construction of four water control structures. These four structures are located at the outlet of Perch Lake, the outlet of Rice Portage Lake, an impoundment that is upstream of Deadfish Lake (commonly known as “Upper Deadfish”), and at the outlet of Deadfish Lake. These structures are used to restore the lake elevations and improve hydrologic function. Issues: The ineffectiveness of current mechanical methods for the restoration project on Rice Portage Lake. Mud Lake continues to produce a thin crop of wild rice, despite its potential for higher yields. Concerns: Invasive species–both invasive and exotic plant species–are of great concern due to their persistence once introduced. While there are no know exotic species in our wild rice lakes, the risk is high given the uses of these lakes by waterfowl hunters and wild rice harvesters. Climate change–weather pattern changes, annual precipitation, and temperature changes–all may impact the viability of our wild rice lakes. Opportunities The Stoney Brook Watershed Study will provide a model that will allow for more effective water level management, and identify opportunities for restoration of the original river system, and abandonment of unnecessary ditch segments. The current trend of land purchasing, land use planning, and increased resource management capabilities affords long term protection for portions of the wild rice lake watershed that were unavailable in the past. Increased Resource Management Division staff and capabilities may allow for opportunities to partner with other agencies and organizations to restore, protect, and enhance wild rice growth throughout the Ceded Territories. Goals & Objectives At a minimum, maintain the current program and management. Increase vegetation treatment acreage per annum. Surface water resources The Fond du Lac Reservation includes abundant freshwater resources, with over 3,000 acres of lakes (828 acres of wild rice waters), nearly 44,000 acres of wetlands, and 96 miles of rivers and streams. The St. Louis River, the largest U.S. tributary to Lake Superior, borders the Reservation to the north and east, and approximately 95% of the waters of the Reservation lie within its watershed. All of the waters within the Reservation are believed to be relatively pristine. There are no known or permitted industrial or municipal discharges to the waters, except to the St. Louis River. Historical hydrological modifications to many of the Reservation’s wild rice lakes occurred with the development of the judicial ditch drainage system early in the twentieth century. Currently, a restoration project is underway to gradually restore Rice Portage Lake, one of the most productive rice lakes, to its historical water levels, and to minimize water level fluctuations on Deadfish Lake, thereby enhancing its stands of rice. Shoreline development and the accompanying potential for increased nutrient inputs (septic discharge and lawn chemicals) and erosion are factors that could affect the water quality of several Reservation lakes. By 1998, the Fond du Lac Environmental Program developed and the Reservation Business Committee adopted a set of Water Quality Standards for the surface water resources of the Reservation, setting contaminant criteria and designating uses for 24 lakes and eight streams within the boundaries, and identifying Outstanding Reservation Resource Waters. More recently, the Band has been granted “Treatment as a State” authority by the U.S. Environmental Protection Agency, under the federal Clean Water Act, enabling it to enact and enforce such standards. As a critical tool for implementing these standards, the Environmental Program designed a comprehensive Water Quality Monitoring Plan. Initially a rigorous three-year monitoring project measuring the physical, chemical and biological quality of 24 lakes and eight streams located within the exterior boundaries of the Reservation, it has since been modified to reflect an ongoing status and trends program. This comprehensive database on Fond du Lac surface waters will also permit the Office of Water Protection to develop numerical biocriteria to replace the narrative biocriteria currently in the tribal Water Quality Standards. The data is also utilized to assess and report on the condition of these water bodies and their attainment of designated and aquatic life uses. Protecting human health requires monitoring for indicators that measure the safety of eating fish or other aquatic wildlife, or of swimming and boating. Conserving ecosystems requires indicators of diverse, healthy aquatic plant and animal communities, and indicators are also needed to assure that water quality and sediment conditions can maintain those biological communities. The Water Quality Monitoring Plan was designed to assess indicators for both human health and aquatic life. Atmospheric deposition of mercury is of particular concern in this boreal forest and wetland ecoregion, as biochemical processes enhance mercury availability to the aquatic food chain, bioaccumulating to levels that are hazardous to top predators and humans. Consequently, fish caught in Reservation waters can be dangerously high in tissue mercury content. Criteria for the Water Quality Standards were calculated under an assumed fish consumption rate that is much higher than the state of Minnesota or the Great Lakes region assumes for the general population, as some Band members rely upon fish at a subsistence level in their diet. The Environmental Program has completed several projects that assessed contaminant levels (mercury, PCBs and lead) and characterized sediments of twelve Reservation lakes and the St. Louis River. In 2001, Fond du Lac partnered with the Minnesota Department of Health to collect and analyze fish tissue from lakes and the St. Louis River (preferred fishing waters), using the data to develop specific fish consumption advisories. Groundwater In 2004, Fond du Lac completed its first Nonpoint Source Assessment Report and applied for Treatment as a State for non-point source authority. The Office of Water Protection received its first base program funding in 2005 and is using that support to implement several projects under the following categories: hydro modification, timber harvesting, roads and urban development. The Resource Management Division is also engaged in a major hydrologic study of the Stoney Brook watershed in partnership with Natural Resources Conservation Service and the U.S. Geological Survey. Ultimately, a Stoney Brook Watershed Management Plan will be developed to account for multiple resource management objectives, including wild rice production and stream and wetland restoration. The Office of Water Protection also has identified aquatic invasive species as a major concern for protecting the Reservation’s water resources. The nonpoint source program provides for broad education and outreach to the Reservation community and affected stakeholders, in order to minimize nonpoint source impacts to Fond du Lac water resources. The primary objectives of the Environmental Program are to ensure the protection of valuable ground water resources through the continued closures of abandoned wells, the delineation of protection zones for wells contributing to community water systems, and the development of a wellhead protection plan for the Reservation. The Fond du Lac Reservation boundary encompasses 101,153 acres, of which 43,264 (43%) are wetlands. These wetlands consist of forested (67% – black spruce, tamarack, or black ash dominant; includes bogs), scrub shrub (29% – alder or willow dominant), emergent (3% – sedge, reed canary grass, or cattail dominant; includes wild rice lakes), and open water (< 1% – coontail dominant). Many wetlands on the Reservation have been degraded due to human activities, particularly by ditching, road construction, agricultural and silvicultural runoff, and commercial and residential development. The Environmental Program has a Wetlands Conservation and Protection program that has been active since October of 1998. A Wetlands Protection and Conservation Plan was adopted by the Reservation Business Committee in October 2000. The plan was expanded, updated and adopted by the Reservation Business Committee in February 2006 to become the Fond du Lac Joint Comprehensive Wetlands Protection and Management Plan. The adoption of this plan led to the development and adoption by the Reservation Business Committee of the Fond du Lac Wetlands Protection and Management Ordinance in June 2006. Erosion and sedimentation resulting from storm water can cause significant impact to surface waters. On the Reservation, construction activities have the potential to be a major contributor to these impacts. Since March 2003, the Office of Water Protection has been providing erosion and sedimentation control best management practices oversight of construction projects on the Reservation. This is the result of the Environmental Protection Agency’s National Pollutant Discharge Elimination System Phase II Construction Storm Water regulations as part of Section 402 of the Clean Water Act. In addition to this voluntary oversight, the Office of Water Protection has also entered into a Storm Water Direct Implementation Tribal Cooperative Agreement to conduct inspections of construction sites impacting one acre or more. Two tribal inspectors have been trained and credentialed by Environmental Protection Agency to conduct inspections on the Reservation. More than 13 projects are scheduled for inspection during the construction seasons of 2007 and 2008. In addition, the Office of Water Protection has been developing the required Storm Water Pollution Prevention Plans for nearly all projects conducted by the Reservation, as well as occasional projects conducted by individual Band members.” A long list of concerns and threats to water resources is included in the report. These related to taconite and sulfide mining operations, mercury deposition, nonpoint source pollution and other causes. “Fisheries The majority of the lakes on the Fond du Lac Reservation are small, shallow bodies of water, more suitable for growing wild rice than for the management of any significant fisheries. Many of these lakes do have fish, however, with populations consisting primarily of northern pike), largemouth bass, panfish, yellow perch), and bullhead. Due to relatively shallow water, high abundance of aquatic macrophytes, and substrates composed predominantly of decaying organic matter, many of these Reservation lakes are incapable of supporting any naturally reproducing populations of walleye (Sander vitreus). These lakes are, however, conducive to the production of northern pike, panfish, largemouth bass, and bullhead but are also subject to frequent winterkill. Most of the lakes on the Reservation do have some type of public access, though most are strictly carry-in accesses. The fishery of the St. Louis River is by far the most important one for residents of the Reservation. At least four game fish species can be found in appreciable numbers; northern pike, walleye, smallmouth bass, and channel catfish. The channel catfish fishery remains the highest priority of Fond du Lac Band members who regularly use the St. Louis River’s fishery resources. Much can be done to improve the trout populations on the Reservation. Stream improvements and the removal of beaver and their lodges and dams may improve habitat for resident trout populations. Stocking may need to be a part of future management activity, but shouldn’t be random and haphazard as past stocking activities appear to have been. In addition, regular assessments need to be performed following any stocking efforts. The fisheries in the 1854 and 1837 Ceded Territories are numerous and diverse, from small trout streams in the Superior National Forest, to lakes such as Mille Lacs that are capable of sustaining large walleye populations, to the salmon and trout of Lake Superior. Walleye and northern pike appear to be the most important species to Band members, and are relatively abundant throughout both of the Ceded Territories. A high priority for Band members is a concentrated subsistence harvest at Mille Lacs Lake, where a regular spring harvest season occurs.”Item Water Resources of the Fond du Lac Indian Reservation, East-Central Minnesota(1989) Ruhl, James F; Fond du Lac Indian Reservation Business CommitteeThis interesting report presents the findings of a hydrologic study of the Fond du Lac Indian Reservation. The study is the outcome of a 1978 Federal mandate to the Bureau of Indian Affairs to review Indian water-rights claims in reservations throughout the United States. The Fond du Lac Indian Reservation study, done by the U. S. Geological Survey in cooperation with the Fond du Lac Indian Reservation Business Committee, is the first of the these studies undertaken in Minnesota under the Federal mandate. The report notes that ground water resources derive from three aquafers, and that surface waters derive from wetlands and surficial waters within the St. Louis River watershed. Except for a small number of well-water samples, water quality was found to be within EPA limits for pollutants and was determined to be safe for human and animal consumption. A few wells had elevated levels of lead and manganese; four principal streams contained E. coli and Streptococcus.Item Wild rice: The dynamics of its population cycles and the debate over its control at the Minnesota legislature.(2008-07) Durkee Walker, Rachel ElenaPopulation cycling in plant and animal communities is of interest to Ojibwe band members and ecologists, and Western ecologists. The causes and consequences of wild rice population cycling and its long term viability have both cultural and scientific implications. I examine several Western scholars' research, its strengths and weaknesses, regarding Ojibwe accommodation of wild rice populations. Building on the interest of Ojibwe and Western ecologists in population cycles, and collaborating with Fond du Lac Reservation managers, I present a model which simulates delays from the release of nitrogen in decomposing wild rice straw. The model and experimental work show how these delays may cause population cycles. I planted wild rice seed obtained from the Fond du Lac Reservation over three years in mesocosms. I asked whether wild rice litter accumulation could inhibit plant growth by nitrogen immobilization in fresh litter. The timing of litter nitrogen immobilization and mineralization affected the potential growth of wild rice, seed production and total plant nitrogen. My data reveals that delays in nutrient availability due to deposition of immobilizing litter potentially cause fluctuations. Litter quantity appears to play a central role. Root litter also appears to be the source of the longest delay in nitrogen cycling through slower decay rates and sustained periods of nitrogen immobilization. Therefore, both Ojibwe cosmological worldviews and my experimental research recognize wild rice population cycles as part of healthy ecosystem functioning. Interest in these cycles is part of a larger interest in wild rice protection, central to the spiritual and cultural integrity of Ojibwe. Due largely to Ojibwe initiatives, legislation passed in Minnesota 2007 requiring submission of an Environmental Impact Statement in the case of a permit to genetically engineer wild rice either within or outside Minnesota. These efforts are part of a long history of Ojibwe attempt to address the cultural implications of Western scientific inquiry, inquiry often made without their consent. In the last chapter of this thesis, I examine the cultural background of this political process, concluding that the historical and political context of scientific investigation is critical to exposing weaknesses in research questions and political processes.