Browsing by Subject "Fluctuation Effects"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Interfaces and Fluctuations in Diblock Copolymer Melts and Ternary Mixtures with Homopolymers(2020-10) Yadav, MridulSelf-consistent field theory (SCFT) is a powerful tool for study of equilibrium phase behavior of block copolymer melts and mixtures. However, it fails to take into account the effect of fluctuations. This leads to some incorrect predictions for the phase behavior including the nature and location of order-disorder tran- sitions, associated phenomemon and phases. SCFT solutions are also limited by finite amount of computer resources available for numerical calculations. This is especially true of highly swollen self-assembled structures with large characteris- tic length scales. Accurate thermodynamic description of the interfaces in these swollen structures is sufficient to describe the phase behavior in this limit. Here we present our studies of the phase behavior of and interfaces in block copolymer melts and mixtures where we incorporate fluctuation effects and study highly swollen phases. The different approaches we take are, in a large part, guided by the limitations of SCFT.We present the first theoretical study into the role of conformational asym- metry in ternary mixtures of AB diblock copolymers, A homopolymers and B homopolymers which are high molecular counterparts of oil-water-surfactant mixtures. We show that the sign of the spontaneous curvature of an asym- metric diblock copolymer monolayer in these ternary mixtures is controlled by competition between swelling and stretching of copolymer brushes. We explore the phase behavior in highly swollen limit using the analytical Helfrich theory of bending elasticity for diblock copolymer monolayers. Further, we present a generalized version of the Helfrich theory that eliminates arbritrary choices in controlling variables needed to stabilize interfaces and presents a simplified description of these monolayers as a pseudo-one component system. We demon- strate the utility of our generalized theory by presenting an accurate thermody- namic description of a metastable phase in the highly swollen limit. Fluctuation effects are considered in the latter part of this thesis. In neat melts of volumetrically symmetric diblock copolymers, we view the strongly correlated disordered phase, near the order-disorder transition to the ordered lamellar phase, as an ensemble of multiple network topologies. We claim that the entropy associated with this ensemble is a constant per junction of the network. We present a free energy model of the disordered phase as the free energy per junction of a surrogate ordered network phase stabilized by this constant junction entropy. We test this claim and the predictions from this model by comparing to results from molecular simulations. We then extend this model to the ternary mixtures. We incorporate the effect of interfacial fluctuations in these mixtures through their effect on the renormalization of rigidities in the disordered phase and an undulation pressure in the lamellar phase. Using these models we predict phase behavior that is consistent with reported behavior in experiments and simulations.Item Structure and Dynamics of Micelle-Forming Asymmetric Diblock Copolymer Chains(2021-09) Chawla, AnshulExperiments on micelle-forming asymmetric diblock copolymer melts have shown the existence of a liquid-like state of micelles at temperatures greater than the order-disorder transition temperature (ODT).These micelles have been hypothesized to appear at an even greater temperature called the critical micelle temperature (CMT). The regime between the CMT and ODT, called the disordered micellar regime, has been known to affect the formation of many exotic phases like the Frank-Kasper and the Laves phases due to its slow dynamics. Self-Consistent Field Theory (SCFT), one of the most commonly employed theoretical tools, only predicts the appearance of micelles in stationary and periodic configurations, and hence is incapable of capturing the disordered micellar regime. Some previous theoretical studies do provide predictions of the structural properties of the disordered micelles, however, these studies used SCFT predictions of free energies of isolated micelles to approximate the free energy of disordered micelles. We have used coarse-grained classical molecular dynamics to simulate melts of asymmetric diblock copolymer chains having a minority block volume fraction, $f = 0.125$.At high $\chi N$, where $\chi$ is the Flory-Huggins interaction parameter and $N$ is the degree of polymerization, SCFT predicts the formation of ordered micellar phases for this volume fraction. Our simulations show the existence of a disordered micellar regime for $\chi N$ above the $\cNso$, where $\cNso$ is the value of $\chi N$ corresponding to the ODT predicted from SCFT. We study melts having two significantly different invariant degree of polymerization, $\overline {N} = 960$ and $3820$, that span the disordered homogenous phase, disordered micellar regime, and the ordered body-centered cubic (BCC) phase. The first part of this thesis pertains to analyzing the evolution of the structure of these melts as a function of $\chi N$.By using a cluster identification algorithm, we show that micelle-like clusters appear at a CMT with the appearance being much more sudden for the higher $\overline {N}$ simulations. Moreover, micelles appear when $\chi N$ is near $\cNso$. We also show that the signature of the presence of disordered micelles in scattering experiments (SAXS and SANS) arises at a somewhat higher $\chi N$ as compared to $\cNso$. Comparisons of the free energy derivative, peak wavenumber, micelle aggregation number and the free chain fraction obtained from simulations with these quantities calculated from SCFT show close agreement, thus emphasizing similarities in the structure of the disordered micelles and the ordered micelles predicted by SCFT at the same $\chi N$. Analysis of the shape of the identified clusters also reveal a rapid formation/breaking of bridges between micelles present in both disordered and ordered phases. The latter part of this thesis considers the dynamics of these melts, namely single chain diffusion and structural relaxation.Signatures of the sudden appearance of micelles at the CMT is also reflected in the analysis of the dynamic properties as a sudden slowdown in the molecular relaxation and an even more significant slow down in the structural relaxation. We measure the rate at which polymers are expelled from micelles, and relate this to the polymer diffusivity.