Browsing by Subject "Faulting"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota(Minnesota Department of Transportation, 2009-01) Velasquez, Raul; Hoegh, Kyle; Yut, Iliya; Funk, Nova; Cochran, George; Marasteanu, Mihai; Khazanovich, LevThe recently introduced Mechanistic-Empirical Pavement Design Guide (MEPDG) and related software provide capabilities for the analysis and performance prediction of different types of flexible and rigid pavements. An important aspect of this process is the evaluation of the performance prediction models and sensitivity of the predicted distresses to various input parameters for local conditions and, if necessary, re-calibration of the performance prediction models. To achieve these objectives, the Minnesota Department of Transportation (MnDOT) and the Local Road Research Board (LRRB) initiated a study “Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota.” This report presents the results of the evaluation of default inputs, identification of deficiencies in the software, sensitivity analysis, and comparison of results to the expected limits for typical Minnesota site conditions, a wide range of pavement design features (e.g. layer thickness, material properties, etc), and the effects of different parameters on predicted pavement distresses. Since the sensitivity analysis was conducted over a span of several years and the MEPDG software underwent significant modifications, especially for flexible pavements, various versions of the MEPDG software were run. Performance prediction models of the latest version of the MEPDG 1.003 were evaluated and modified or recalibrated to reduce bias and error in performance prediction for Minnesota conditions.Item Performance Benefits of Fiber-Reinforced Thin Concrete Pavement and Overlays(Minnesota Department of Transportation, 2021-07) Barman, Manik; Roy, Souvik; Tiwari, Amarjeet; Burnham, TomThis study investigates the performance benefits of synthetic structural fibers in mitigating distresses in thin concrete pavements and overlays. In this study, two ultra-thin (3 and 4 inches thick) and four thin (5 and 6 inches thick) concrete pavements placed on a gravel base along with two thin unbonded concrete overlay cells (5 inches thick) placed on an existing concrete pavement were constructed at the Minnesota Road Research (MnROAD) facility in 2017. This report discusses the objectives and methodology of the research, including the construction of the test cells, instrumentation, traffic load application, and data collection and analysis procedures. The structural responses and distresses observed over three years, such as fatigue cracking and faulting, as well as the joint performance measured in each cell, were discussed and compared in this report.Item Toward the development of pavement-specific structural synthetic fibers(Minnesota Department of Transportation, 2024-06) Barman, Manik; Sabu, Rohith; Sharma, Pranav; Janson, AustinThin fiber reinforced concrete (FRC) pavements and overlays can be economical for low- and moderate-traffic volume roads. Due to insufficient concrete cover thickness, thin concrete pavements or overlays cannot accommodate dowel bars that are typically used in conventional thick concrete pavements. The critical distress for such applications is the transverse joint faulting because of the lack of joint load transfer between the concrete slabs. The currently available synthetic structural fibers can contribute to joint performance to a certain extent. However, as pavements experience significant slab contraction and expansion and carry both wheel and environmental loads, there is a need to design and develop fibers that will provide high joint performance and help mitigate transverse joint faulting when used at an affordable dosage. The overall goal of this study is to develop pavement-specific fibers that will yield the needed joint performance benefits to achieve the intended design life. The study is being conducted in two phases. This report is written for Phase 1 of the study. The study started with a literature review, followed by a finite element analysis, falling weight deflectometer (FWD) data analysis, and laboratory testing of fiber reinforced concrete and individual fibers embedded in concrete. The finite element results and FWD data were amalgamated to quantify the possible joint load transfer of the base layer and foundation, aggregate interlocking, and the needed contribution from the structural fibers. A procedure was established to account for the contribution of the fibers. A new parameter, namely, modulus of fiber support, was introduced to evaluate the stiffness of the fibers that participate in joint load transfer. Notably, a laboratory approach is identified to determine the modulus of fiber support, which can help determine the optimum fiber dosages as well as design and test the pavement-specific fibers in the future phase of the study.