Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "FMRI data"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Computational issues in using Bayesian hierarchical methods for the spatial modeling of fMRI data.
    (2010-08) Lee, Kuo-Jung
    One of the major objectives of fMRI (functional magnetic resonance imaging) studies is to determine which areas of the brain are activated in response to a stimulus or task. To make inferences about task-specific changes in underlying neuronal activity, various statistical models are used such as general linear models (GLMs). Frequentist methods assessing human brain activity using data from fMRI experiments rely on results from the theory of Gaussian random fields. Such methods have several limitations. The Bayesian paradigm provides an attractive framework for making inference using complex models and bypassing the multiple comparison problems. We propose a Bayesian model which not only takes into account the complex spatio-temporal relationships in the data while still being computationally feasible, but gives a framework for addressing other interesting questions related to how the human brain works. We study the properties of this approach and demonstrate its performance on simulated and real examples.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues