Browsing by Subject "Energy Alignment"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Valence electronic structure of semiconductor quantum dot and wide band gap oxide interfaces by ultraviolet photoelectron spectroscopy.(2009-08) Timp, Brooke AndreaEnergy level alignment is an important factor in efficient charge transfer at an interface between two semiconductors. This topic is explored in model systems that are relevant to quantum dot-sensitized solar cells, inorganic semiconductor nanoparticles adsorbed on single crystal wide band gap oxide substrates, using ultraviolet photoelectron spectroscopy. Cadmium selenide quantum dots are assembled on a ZnO (10-10) surface using 3-mercaptopropionic acid linkers. The valence band maximum of the CdSe quantum dots is found to be located at 1.1 ± 0.1 eV above the valence band maximum of ZnO, nearly independent of the size of the quantum dots (2.1-4.2 nm). This finding suggests that, upon adsorption, there is strong electronic interaction between CdSe quantum dots and the ZnO surface. As a result, varying the quantum dot size mainly tunes the alignment of the conduction band minimum of CdSe with respect to that of the ZnO surface. Sub-monolayer films of PbSe quantum dots are prepared on single crystal substrates, ZnO (10-10) and TiO2 (110), and exposed to ligand solutions, either hydrazine or 1,2-ethanedithiol (EDT) in acetonitrile. Interfacial energy alignment is measured as a function of quantum dot size, substrate and ligand treatment. The affect of the ligand treatments on the energy alignment is substrate-dependent. The valence band maximum of the dots is size-independent on ZnO due to strong electronic interactions with the substrate; in particular, EDT-treated films show significant enhancement of quantum dot valence band intensity due to electronic coupling with the ZnO surface. In contrast, the quantum dot valence band maximum is size-dependent and shows a smaller shift between ligand treatments for films on TiO2, suggesting weaker quantum dot-substrate interactions. In most cases the measured alignment predicts that electron injection from a photoexcited PbSe quantum dot to either ZnO or TiO2 will necessitate the involvement of higher-lying levels above the first excitonic transition.