Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "DNA Separation"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    My adventures in microfluidics: exploration of novel modes for sized-based DNA separation
    (2014-06) Thomas, Joel Daniel Pierson
    DNA separation is ubiquitous in biological research. The common technique for performing these separations, gel electrophoresis, leaves much to be desired. The separations are slow, taking hours to separate. There can also be huge variations in quality between gels, due to the randomness of the gel. Gels are limited to DNA smaller than about 15 kbp, unless pulsed fields are used that take even longer to separate. Performing these separations in microfluidic devices overcomes some of these problems. Two common geometries used to separate DNA are the slit-well geometry and the post array geometry. Using the understanding gained using these geometries, researchers have been able to create continuous separation devices.We have tested novel operations modes, initially predicted by theory and simulations, within these well understood geometries. We achieved bi-directional migration using an asymmetric pulsed electric field in the slit well geometry. This created a non-clogging DNA filter. We achieved improved separation in a hexagonal post array by rotating the array. We were able to separate DNA in a shorter array, 4 mm, and at a higher electric field, 50 V/cm, than seen before. We also tried to create a continuous DNA separation device using proximity field nano-patterning, but were ultimately unsuccessful. While the work done to develop microfluidic DNA separation devices by a multitude of researchers ultimately did not change how DNA separations are performed in biology labs, the advances and insights gained from those performing the work led to great advancements in DNA manipulation techniques, including genomic and sequencing techniques. In fact, a genomic technique called DNA barcoding, which is performed by stretching DNA in very small channels, or nanochannels, would not have been possible without the initial microfluidic work in DNA separation techniques.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues