Browsing by Subject "Compressive strength"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Development of a Rock Strength Database(Minnesota Department of Transportation, 2018-06) Folta, Brian; Sharpe, Jacob; Hu, Chen; Labuz, JosephRock strength and elastic behavior are important for foundations such as spread footings resting on rock and drilled shafts socketed into rock. In addition to traditional rock quality information, stiffness and failure parameters are helpful for design. MnDOT has previously used a low-capacity load frame for routine rock testing but this apparatus does not generate sufficient force for testing hard rock. The report provides a comprehensive suite of results from 134 specimens tested under uniaxial compression and 33 specimens tested under triaxial compression on a wide variety of rock, including hard rock, which frequently is of interest for high-capacity foundation systems. Thus, an economic benefit is realized if the strength of the rock is measured, as opposed to correlated with an index parameter, due to the potential to reduce foundation size and construction time. Information from the testing was used to expand the MnDOT database of rock properties and allow for improved designs based on accurate measurements of Young’s modulus, uniaxial compressive strength, and friction angle.Item Mechanical Properties of High Strength Concrete(Minnesota Department of Transportation, 1998-01) Mokhtarzadeh, Alireza; French, Catherine E.Researchers conducted an experimental program to investigate production techniques and mechanical properties of high-strength concrete and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. High-strength concretes with 28-day compressive strengths in the range of 8,000 to 18,600 psi (55.2 to 128 MPa) were produced. Test variables included total amount and composition ofcementitious material, portland cement, fly ash, and silica fume; type and brand of cement; type of silica fume, dry densified and slurry; type and brand of high-range water-reducing admixture; type of aggregate; aggregate gradation; maximum aggregate size; and curing. Testing determined the effects of these variables on changes in compressive strength and modulus of elasticity over time, on splitting tensile strength, on modulus of rupture, on creep, on shrinkage, and on adsorption potential as an indirect indicator of permeability. The study also investigated the effects of test parameters such as mold size, mold material, and end condition. More than 6,300 specimens were cast from approximately 140 mixes over a period of three years.Item Validation of Prestressed Concrete I-Beam Deflection and Camber Estimates(Minnesota Department of Transportation, 2012-06) O'Neill, Cullen; French, CatherineThe camber at the time of bridge erection of prestressed concrete bridge girders predicted by the Minnesota Department of Transportation (MnDOT) was observed to often overestimate the measured cambers of girders erected at bridge sites in Minnesota, which, in some cases, was causing significant problems related to the formation of the bridge deck profile, the composite behavior of the girders and bridge deck, delays in construction and increased costs. Extensive historical data was collected from two precasting plants and MN counties and it was found that, on average, the measured cambers at release and erection were only 74% and 83.5%, respectively, of the design values. Through data collection, analysis, and material testing, it was found that the primary causes of the low camber at release were concrete release strengths that exceeded the design values, the use of an equation for concrete elastic modulus that greatly under-predicted the measured values, and thermal prestress losses not accounted for in design. Fourteen girders were instrumented and their camber measured and the program PBEAM was used to evaluate the influence of various time-dependent effects (i.e., solar radiation, relative humidity, concrete creep and shrinkage, length of cure and bunking/storage conditions) on long-term camber. Once investigated, these effects were included in long-term camber predictions that were used to create sets of both time-dependent and singlevalue camber multipliers. The use of these multipliers, along with modifications made to the elastic release camber calculations, greatly reduced the observed discrepancy between measured and design release and erection cambers.