Browsing by Subject "Camber"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item A Camber Study of MnDOT Prestressed Concrete I-Girders(Minnesota Department of Transportation, 1998-01) Woolf, Douglass; French, CatherineThis project investigated the relationship between predicted and measured girder cambers. For more than three years, researchers collected camber data on girders of various depths and lengths from the time of strand release until shipment to the job site. Researchers used three camber prediction methods to compare with the measured values: PCI method, Branson's timestep approach, and "CRACK" analysis program by Ghali et. al. The Branson time-step approach resulted in the closest predictions to the measured cambers. The PCI method, although simple, gave reasonable long-term camber results compared with the more detailed methods.Item Effect of Temperature on Prestressed Concrete Bridge Girder Strand Stress During Fabrication(Center for Transportation Studies, University of Minnesota, 2015-12) Swenson, Tanner W.; French, Catherine E. W.The Minnesota Department of Transportation has reported erection cambers of many prestressed concrete bridge girders that were much lower than anticipated. A previous University of Minnesota study (O’Neill and French, MnDOT 2012-16) attributed the discrepancies to inaccurate estimates of the concrete strength and stiffness at release and strand force loss due to temperature during fabrication. The objective of this study was to further investigate the effects of temperature on strand force and camber during precast, prestressed girder fabrication and to make recommendations for the design and fabrication processes to reduce the potential loss of prestress due to temperature effects during fabrication and to improve the release camber estimation. A thermal effects analysis was developed based on four key steps in the girder fabrication process: tensioning, concrete-steel bond, release, and normalization. The study included fabricating six short prestressed concrete segments released at early ages to determine the time/temperature associated with bonding the prestressing strand to the concrete. To investigate the non-recoverable prestress losses during girder fabrication, four sets of girders (MN54 and 82MW) were instrumented with thermocouples, strain gages, and in some cases load cells, that were monitored during the fabrication process to separate the thermal and mechanical strain components. Effects investigated included casting during a cold season, casting during a warm season, casting with the free length of strand covered, and casting with different bed occupancy during any season. A recommended procedure for adjusting strand force during tensioning was proposed to account for non-recoverable strand force changes due to temperature changes between tensioning and bond.Item Self-Compacting Concrete (SCC) for Prestressed Bridge Girders(Minnesota Department of Transportation, 2008-10) Erkmen, Bulent; Shield, Carol K.; French, Catherine E.Researchers conducted an experimental program to investigate the viability of producing self-consolidating concrete (SCC) using locally available aggregate, and the viability of its use in the production of precast prestressed concrete bridge girders for the State of Minnesota. Six precast prestressed bridge girders were cast using four SCC and two conventional concrete mixes. Variations in the mixes included cementitious materials (ASTM Type I and III cement and Class C fly ash), natural gravel and crushed stone as coarse aggregate, and several admixtures. The girders were instrumented to monitor transfer length, camber, and prestress losses. In addition, companion cylinders were cast to measure the compressive strength and modulus of elasticity, and to monitor the creep and shrinkage over time. The viability of using several test methods to evaluate SCC fresh properties was also investigated. The test results indicated that the overall performance of the SCC girders was comparable to that of the conventional concrete girders. The measured, predicted, and calculated prestress losses were generally in good agreement. The study indicated that creep and shrinkage material models developed based on companion cylinder creep and shrinkage data can be used to reasonably predict measured prestress losses of both conventional and SCC prestressed bridge girders.Item Validation of Prestressed Concrete I-Beam Deflection and Camber Estimates(Minnesota Department of Transportation, 2012-06) O'Neill, Cullen; French, CatherineThe camber at the time of bridge erection of prestressed concrete bridge girders predicted by the Minnesota Department of Transportation (MnDOT) was observed to often overestimate the measured cambers of girders erected at bridge sites in Minnesota, which, in some cases, was causing significant problems related to the formation of the bridge deck profile, the composite behavior of the girders and bridge deck, delays in construction and increased costs. Extensive historical data was collected from two precasting plants and MN counties and it was found that, on average, the measured cambers at release and erection were only 74% and 83.5%, respectively, of the design values. Through data collection, analysis, and material testing, it was found that the primary causes of the low camber at release were concrete release strengths that exceeded the design values, the use of an equation for concrete elastic modulus that greatly under-predicted the measured values, and thermal prestress losses not accounted for in design. Fourteen girders were instrumented and their camber measured and the program PBEAM was used to evaluate the influence of various time-dependent effects (i.e., solar radiation, relative humidity, concrete creep and shrinkage, length of cure and bunking/storage conditions) on long-term camber. Once investigated, these effects were included in long-term camber predictions that were used to create sets of both time-dependent and singlevalue camber multipliers. The use of these multipliers, along with modifications made to the elastic release camber calculations, greatly reduced the observed discrepancy between measured and design release and erection cambers.