Browsing by Subject "Bridge foundations"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Cone Penetration Test Design Guide for State Geotechnical Engineers(Minnesota Department of Transportation, 2018-11) Dagger, Ryan; Saftner, David; Mayne, PaulThe objectives of this project are focused on a new cone penetration testing (CPT) geotechnical design manual for highway and transportation applications based on recent research and innovation covering the period from 2000 to 2018. A step-by-step procedure is outlined on how to use CPT data in the analysis and design of common geotechnical tasks. Previous manuals are either very outdated with information from 1970-1996, or not appropriately targeted to transportation works. This design document introduces modern and recent advancements in CPT research not otherwise captured in legacy manuals from the 1990's and earlier. Examples and case studies are provided for each topic interpreted using CPT measures. In the manual, a step-by-step procedure is outlined on how to use CPT data in analysis and design for typical geotechnical practices. These topics, which are applicable both to state highways and local roads, include bridge foundations (including shallow footings and deep foundations) and soil characterization (including determination of standard soil engineering properties).Item Scour Monitoring Technology Implementation(Center for Transportation Studies, University of Minnesota, 2014-09) Lueker, Matthew; Marr, JeffBridge scour is the removal of sediment around bridge foundations and can result in the failure of the bridge. Scour monitoring is performed to identify unacceptable scour on bridges considered to be scour critical and determine when scour reaches elevations that could cause potential bridge failure. Two types of monitoring are available: portable monitoring and fixed monitoring. Prior to this project, MnDOT was only using portable monitoring devices, which requires the deployment of personnel to make physical measurements of scour depths. For some scour critical bridges, especially during high-water events, fixed instrumentation capable of continuous scour monitoring was preferred, but MnDOT lacked the experience or expertise to install this type of equipment. This project installed fixed monitoring equipment at two bridge sites and monitored them for three years to determine the effectiveness and reliability of fixed scour monitoring deployments. Several device options were installed to allow MnDOT to analyze the installation and performance of different types of sensors. Both systems operated for the three years with some outages due to various causes but overall performance was acceptable. The outages were mostly related to power issues and communication issues. Valuable lessons were learned through the deployment, which may be applied to future installations. The deployment executed in this project has provided the confidence to deploy other fixed scour monitoring equipment at key bridges around the state of Minnesota. In addition, the data collected during deployment of the scour monitoring equipment has been stored and provides insight into scour processes. This data can be used by other research groups for design or research purposes.