Browsing by Subject "Bridge construction"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Effect of Temperature on Prestressed Concrete Bridge Girder Strand Stress During Fabrication(Center for Transportation Studies, University of Minnesota, 2015-12) Swenson, Tanner W.; French, Catherine E. W.The Minnesota Department of Transportation has reported erection cambers of many prestressed concrete bridge girders that were much lower than anticipated. A previous University of Minnesota study (O’Neill and French, MnDOT 2012-16) attributed the discrepancies to inaccurate estimates of the concrete strength and stiffness at release and strand force loss due to temperature during fabrication. The objective of this study was to further investigate the effects of temperature on strand force and camber during precast, prestressed girder fabrication and to make recommendations for the design and fabrication processes to reduce the potential loss of prestress due to temperature effects during fabrication and to improve the release camber estimation. A thermal effects analysis was developed based on four key steps in the girder fabrication process: tensioning, concrete-steel bond, release, and normalization. The study included fabricating six short prestressed concrete segments released at early ages to determine the time/temperature associated with bonding the prestressing strand to the concrete. To investigate the non-recoverable prestress losses during girder fabrication, four sets of girders (MN54 and 82MW) were instrumented with thermocouples, strain gages, and in some cases load cells, that were monitored during the fabrication process to separate the thermal and mechanical strain components. Effects investigated included casting during a cold season, casting during a warm season, casting with the free length of strand covered, and casting with different bed occupancy during any season. A recommended procedure for adjusting strand force during tensioning was proposed to account for non-recoverable strand force changes due to temperature changes between tensioning and bond.Item Full-Depth Precast Concrete Bridge Deck System: Phase II(Minnesota Department of Transportation, 2012-10) Halverson, Max; French, Catherine; Shield, CarolThe Minnesota Department of Transportation (MnDOT) has developed a design for a precast composite slab-span system (PCSSS) to be used in accelerated bridge construction. The system consists of shallow inverted-tee precast beams placed between supports with cast-in-place (CIP) concrete placed on top, forming a composite slab-span system. Suitable for spans between 20 and 60 ft., the MnDOT PCSSS is useful for replacing a large number of aging conventional slab-span bridges throughout the United States highway system. The PCSSS has particular durability, constructability, and economical concerns that affect its value as a viable bridge design. To address these concerns, the performance of existing PCSSS bridges was evaluated and a review of a number of PCSSS design details was conducted. The field inspections demonstrated that design changes made to the PCSSS over its development have improved performance. A parametric design study was also conducted to investigate the effects of continuity design on the economy of the PCSSS. It was recommended that the PCSSS be designed as simply supported rather than as a continuous system.