Browsing by Subject "Bicycle sharing"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Analysis of the effect of multi-level urban form on bikeshare demand: Evidence from seven large metropolitan areas in the United States(Journal of Transport and Land Use, 2020) Nasri, Arefeh; Younes, Hannah; Zhang, LeiBikeshare programs in their current form have been in place for several years in many cities across the United States. Encouraging people to use bikeshare for their daily routine travel has numerous social, economic, environmental, and health benefits. Therefore, it is important to understand factors influencing bikeshare use in different urban areas to improve the system and encourage more use. This paper investigates how the built environment at both local and regional scales influences bikeshare use in seven large metropolitan areas in the U.S. The study areas include Boston, Chicago, Philadelphia, Minneapolis, San Francisco, San Jose, and Washington, D.C., and the data consists of about 12 million bike trips from approximately 2,000 stations over a one-year period. In addition to linear regression models built for each individual city for comparison purposes, a multi-level mixed effect regression model is built to predict the number of trips originated from each station with respect to the local and regional built environment pattern. The results are consistent with previous research on the effect of land use at the local level on bikeshare demand and show that residential density, regional diversity, pedestrian-oriented road network density, and job accessibility via transit all have a significant positive effect on bikeshare demand. At the regional level, results suggest that the overall level of mixed-use development and overall bike-friendliness in the region (i.e., exclusive bike routes, right-of-way, and bike facilities) and higher congestion level in the region are significant factors influencing bikeshare activities and demand. Models developed in this study could be applied to other communities that are seeking to improve and/or expand their bikeshare systems, as well as cities planning to launch new bikeshare programs.Item A bikeshare station area typology to forecast the station-level ridership of system expansion(Journal of Transport and Land Use, 2019) Gehrke, Steven R.; Welch, Timothy F.The continuous introduction and expansion of docked bikeshare systems with publicly available origin-destination data have opened exciting avenues for bikeshare research. In response, a flux of recent studies has examined the sociodemographic determinants and safety or natural environment deterrents of system ridership. An increasing abundance of disaggregate spatial data has also spurred recent calls for research aimed at extending the utility of these contextual data to model bikeshare demand and trip patterns. As planners and operators seek to expand bikeshare services into underserved areas, a need exists to provide a data-driven understanding of the spatial dynamics of bikeshare use. This study of the Washington, DC, metro region's Capital Bikeshare (CaBi) program answers this call by performing a latent class cluster analysis to identify five bikeshare station area types based on variation in a set of land development pattern, urban design, and transportation infrastructure features. This typology is integrated into a planning application exploring the potential for system expansion into nearby jurisdictions and forecasting the associated trip-making potential between existing and proposed station locations.Item Dockless bike-sharing system: Solving the problem of faulty bikes with simultaneous rebalancing operation(Journal of Transport and Land Use, 2020) Usama, Muhammad; Zahoor, Onaira; Shen, Yongjun; Bao, QiongThe Free-Floating Bike-Sharing System (FFBS) enables commuters to pick up and drop off a shared bike without going to a docking station before and after the trip. However, the specific sharing features of the FFBS can also be a problem for users because randomly scattered and faulty bikes within the system can result in bike unavailability and maintenance difficulties. This not only negatively impacts the company’s service quality but also causes user safety issues. In this study, a mechanism for the rebalancing of useable bikes and faulty bikes is presented in two steps: 1) gathering each faulty bike at a station determined by the model traversing the shortest path by light service vehicles; and 2) enabling the rebalancing operation to obtain optimal bike inventory levels at all stations and collect faulty bikes at a depot. The destination station from which each faulty bike is taken is considered a decision variable rather than shifting them to a closer station. The mechanism is based on minimizing the total cost of the rebalancing operation by optimizing the formulated problem, supported by time and capacity constraints. Using CPLEX solver, the validity of the model is tested through different numerical experiments.Item Drawing the map: The creation and regulation of geographic constraints on shared bikes and e-scooters in San Francisco, CA(Journal of Transport and Land Use, 2021) Moran, Marcel E.A prominent question in transportation planning is how cities should regulate emerging modes, such as shared bikes and e-scooters. This pertains to a range of attributes, including pricing, use of the public right of way, number of vehicles in a fleet, and vehicle speeds. However, less attention has been paid to the way private operators spatially constrain access to their fleets, such as via the use of virtual geographic boundaries (hereafter "geofences"), or how municipalities have regulated these features. San Francisco, given it is home to a number of these schemes, presents a compelling case for studying geofences, and how regulators have sought to influence them to further public policy goals, including spatial equity. This study analyzes each bike and e-scooter geofence in San Francisco longitudinally from 2017 to 2019 via manual digitization of all geofences. This reveals high levels of overlap in the city’s dense northeast quadrant, with limited to no coverage in western neighborhoods. Each operator’s geofence expanded over this period, filling in gaps in the northeast quadrant and expanding outward in each direction. Review of permit guidelines and applications submitted by operators indicate that San Francisco’s regulations for geofences have been limited and inconsistent, which may have contributed to the concentration of services in one section of the city, as well as disconnected geofence “islands.” Together, these observations demonstrate that if broad geofence coverage (i.e., spatial equity) is an explicit municipal goal, such an aim must prominently feature into the regulatory process. This is particularly important given that operators, if left with freedom over geofence design, are likely to emphasize only a city’s densest areas, especially if tight caps are set on the allowed number of vehicles. Finally, this case also exemplifies that geofences are not drawn in a vacuum but instead relate to other permit conditions as well as pressure from community organizations.