Browsing by Subject "Bayesian estimation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The impact of weight matrices on parameter estimation and inference: A case study of binary response using land-use data(Journal of Transport and Land Use, 2013) Wany, Yiyi; Kockelman, Kara; Wang, Xiaokun (Cara)This paper develops two new models and evaluates the impact of using different weight matrices on parameter estimates and inference in three distinct spatial specifications for discrete response. These specifications rely on a conventional, sparse, inverse-distance weight matrix for a spatial auto-regressive probit (SARP), a spatial autoregressive approach where the weight matrix includes an endogenous distance-decay parameter (SARPα), and a matrix exponential spatial specification for probit (MESSP). These are applied in a binary choice setting using both simulated data and parcel-level land-use data. Parameters of all models are estimated using Bayesian methods. In simulated tests, adding a distance-decay parameter term to the spatial weight matrix improved the quality of estimation and inference, as reflected by a lower deviance information criteriaon (DIC) value, but the added sampling loop required to estimate the distance-decay parameter substantially increased computing times. In contrast, the MESSP model’s obvious advantage is its fast computing time, thanks to elimination of a log-determinant calculation for the weight matrix. In the model tests using actual land-use data, the MESSP approach emerged as the clear winner, in terms of fit and computing times. Results from all three models offer consistent interpretation of parameter estimates, with locations farther away from the regional central business district (CBD) and closer to roadways being more prone to (mostly residential) development (as expected). Again, the MESSP model offered the greatest computing-time savings benefits, but all three specifications yielded similar marginal effects estimates, showing how a focus on the spatial interactions and net (direct plus indirect) effects across observational units is more important than a focus on slope-parameter estimates when properly analyzing spatial data.Item Mobile Robot Localization Under Processing And Communication Constraints(2016-03) Nerurkar, EshaMobile robot localization is one of the most fundamental problems in robotics. For robots assisting humans in tasks such as surveillance, search and rescue, and space exploration, accurate localization, that is, precisely estimating the robot's pose (position and orientation), is a prerequisite for autonomous operation. The system resources (processing and communication) for localization, however, are often limited, and their availability varies widely depending upon the application and the operating environment. Therefore, the objective of this work is to develop resource-aware estimators for robot localization, which optimally utilize all available resources in order to maximize estimation accuracy. In the first part of this thesis, we address the problem of robot localization under processing constraints, focusing on the key applications of single-robot Simultaneous Localization and Mapping (SLAM) and multi-robot Cooperative Localization (CL). For SLAM, we propose two resource-aware approaches, the approximate Minimum Mean Squared Error (MMSE) estimator-based Power-SLAM algorithm and the approximate batch Maximum A Posterior (MAP) estimator-based Constrained Keyframe-based Localization and Mapping (C-KLAM). When approximations are inevitable due to processing constraints, both approaches aim to minimize the information loss while generating consistent estimates. For CL, we exploit the sparse structure of the batch MAP estimator to develop a resource-aware, fully-distributed multi-robot localization algorithm, that harnesses the processing, storage, and communication resources of the entire team, to obtain substantial speed-up. The second part of this thesis focuses on CL under communication constraints, in particular, asynchronous communication and bandwidth constraints. Due to limited communication range or the presence of obstacles, robots communicate asynchronously, that is, they can only interact with different sub-teams over time and exchange information intermittently. For this scenario, we develop a family of resource-aware information exchange rules for the robots, in order to ensure optimal and consistent localization performance. Lastly, this thesis investigates the problem of decentralized estimation under stringent communication bandwidth constraints. Here, robots can communicate only a severely quantized version (few or only one bit), of their real-valued sensor measurements, to the team. Existing estimation frameworks, however, are designed to process either real-valued or quantized measurements. To overcome this drawback, we propose a paradigm shift in estimation methodology by focusing on the design and performance evaluation of the first-ever, resource-aware, hybrid estimators. The proposed hybrid estimators are able to process both locally-available real-valued information, along with the quantized information received from the team, in order to maximize localization accuracy. Finally, we note that mobile robot applications are no longer limited to specialized and expensive robots. Commonly-available hand-held devices such as cell phones, PDAs, and even cars, are equipped with processing, sensing, and networking capabilities. Therefore, when coupled with the proposed innovative, scalable, and resource-aware algorithms, these ubiquitous mobile devices can lead to a proliferation of novel location-based services.