Browsing by Subject "Asphalt tests"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Experimental and Computational Investigations of High-Density Asphalt Mixtures(Minnesota Department of Transportation, 2019-10) Marasteanu, Mihai; Le, Jia-Liang; Hill, Kimberly; Yan, Tianhao; Man, Teng; Turos, Mugurel; Barman, Manik; Arepalli, Uma Maheswar; Munch, JaredCompaction of asphalt mixtures represents a critical step in the construction process that significantly affects the performance and durability of asphalt pavements. In this research effort, the compaction process of asphalt mixtures was investigated using a combined experimental and computational approach. The primary goal was to understand the main factors responsible for achieving good density and was triggered by the success of a recently proposed Superpave 5 mix design method. First, a two-scale discrete element method (DEM) model was developed to simulate the compaction process of asphalt mixtures. The computational model was anchored by a fluid dynamics-discrete element model, which is capable of capturing the motion of aggregates in the viscous binder. The model was then calibrated and validated by a series of experiments, which included rheological tests of the binder and a compaction test of the mixture. It was concluded that the compaction process was significantly influenced by the rheological properties of the fine aggregate matrix and by the sphericity of the coarse aggregates. Finally, the mechanical properties of two high-density mixtures were determined and compared with mechanical properties of mixtures used for MnROAD 2017 National road Research Alliance (NRRA) test sections. It was found that the properties of high-density mixtures as a group were not significantly different compared to the properties of conventional mixtures.Item Full-Depth Reclamation (FDR) for Suburban/Urban and Local Roads Application(Minnesota Department of Transportation, 2016-12) Hartman, Marcella; Turos, Mugur; Ghosh, Debaroti; Marasteanu, MihaiFull-depth reclamation (FDR) as a rehabilitation method improves the service life of pavement structures by reusing asphalt materials, thereby reducing costs and allowing for conservation of nonrenewable resources. However, the lack of mechanicsbased material testing procedures and performance-based specifications limit the use of FDR processes. First, the FDR design and construction process are presented, then, a literature review focusing on FDR research is completed, and a survey is conducted to obtain relevant information regarding current FDR practices in Minnesota. Next, Indirect Tensile Test (IDT) and Dynamic Modulus Test in IDT mode testing is performed on four FDR materials: Field mixed, Lab compacted; Lab mixed, Lab compacted; FDR with cement additive; and FDR with graphene nanoplatelet (GNP) additive. Two curing times are used to determine how physical properties change over time. Test results are used to perform simulations in MnPAVE software and a Life Cycle Cost Analysis (LCCA). Laboratory observations indicate that cement additive reduces predicted life and increases critical cracking temperature with a slight increase in cost; GNP additive reduces predicted life but also reduces critical cracking temperature with a significant cost increase; Lab mixed samples performed better than Field mixed, suggesting that field methods could be improved; and curing has a positive effect on the FDR materials with cement and GNP additives--for both materials, the dynamic modulus increase, and the GNP samples also had a slight increase in tensile strength. MnPAVE simulations and LCCA results indicate that over a 35-year period, FDR may be a more cost-effective method than traditional mill and overlay.Item Synthesis of Performance Testing of Asphalt Concrete(Minnesota Department of Transportation Research Services Section, 2011-09) Dave, Eshan; Koktan, Philip DaleAt present, like many other agencies, the Minnesota Department of Transportation asphalt material specifications rely primarily on volumetric properties to ensure good field performance. There have been considerable amounts of research efforts to develop so called “asphalt performance tests” that can link laboratory-measured parameters to pavement performance. Research efforts are also undertaken to refine the asphalt mix-design method so that laboratory tests and procedures can be incorporated into material specification. This research project explored availability of such tests, their suitability, and their use by other agencies.