Browsing by Subject "Analytical tools"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Immunogenicity and ecotoxicity of engineered nanoparticles(2012-12) Maurer-Jones, Melissa AnnThe growing use of nanoscale materials in commercially available products and therapeutics has created an urgent need to determine the toxicity of these materials so that they may be designed and employed safely. As nanoparticles have unique physical and chemical properties, the challenges in determining their physiological and environmental impact have been numerous. It is, therefore, the goal of my thesis work to employ sensitive analytical tools to fundamentally understand the how nanoparticles interact with immunologically and ecologically relevant models. My project approaches nanotoxicity studies starting with a relevant model system exposed to well-characterized nanoparticles to (1) determine if cells/organisms survive exposure using traditional toxicological assays and, if the majority survives exposure, (2) use sensitive analytical tools to determine if there are changes to critical cell/organism function. If perturbation of function is detected, (3) the mechanism or cause of changes in cell function should be determined, including assessment of nanoparticle uptake and localization. Once a mechanism of interaction is determined, this process could begin again with a modified particle that may address the toxic response. Chapter Two describes the impact of metal oxide (TiO2 and SiO2) nanoparticles on mast cells, critical immune system cells, and utilizes the sensitive technique of carbon-fiber microelectrode amperometry (CFMA) to monitor changes in the important mast cell function of exocytosis. Chapter Three expands upon Chapter Two and examines in more detail the mechanism by which TiO2 nanoparticles impact exocytotic cell function, completing the process nanotoxicity described above. From these studies, it was determined that, while nanoparticles do not decrease the viability of mast cells, there are significant changes to exocytosis upon nanoparticle exposure, and in the case of TiO2, these changes in exocytosis are correlated to nanoparticle-induced oxidative stress. The generalizability of the mechanism of TiO2 toxicity, as detailed in Chapter Two and Three, is explored in Chapter Four in a bacteria model, Shewanella oneidensis, studying the functions of biofilm formation using a quartz crystal microbalance (QCM) and flavin secretion using high performance liquid chromatography (HPLC). This study revealed that the proximity of the TiO2 nanoparticles to S. oneidensis caused changes in gene expression resulting in an observed delay in biofilm growth and increase in riboflavin secretion. Chapter Five works to develop an in situ Ag nanoparticle characterization tool using fluorous-phase ion selective electrodes to measure dissolved Ag+, with preliminary investigation into the toxicity of Ag nanoparticles and Ag+ ions to S. oneidensis, resulting in one of the first in situ characterization tools for nanoparticles during toxicity assessments. Moving beyond laboratory work, Chapter Six examines bench scientists' perspective on the regulation of nanotherapies moving from pre-clinical to first-in-human trials and the ethical considerations for the implementation of nanotechnology. Finally, Chapter Seven details the development of a 3-day nanotoxicity laboratory for introductory chemistry classes to introduce students to interdisciplinary science and the cutting edge research field of nanotoxicology. In total, my project has considered the scientific, ethical, and educational implications for nanotoxicology and has ultimately contributed to a better understanding of the nanoparticle-cell interaction.Item Model-based control of transitional and turbulent wall-bounded shear flows(2013-01) Moarref, Rashad