Browsing by Subject "Advanced driver information systems"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Connected Vehicles Program: Driver Performance and Distraction Evaluation for In-vehicle Signing(Center for Transportation Studies, University of Minnesota, 2012-03) Creaser, Janet; Manser, MichaelThe Minnesota Department of Transportation (MnDOT) conducted a demonstration project as part of the Connected Vehicles Program to design, build, and test three new software applications to run on a commercially available personal navigation device (PND). The goal of this study was to examine only the in-vehicle signing (IVS) function for four zones and determine the utility and potential distraction associated with this function. The specific zones of interest that were signed on the PND were areas where speed zone changes occurred along the same roadway or for speed changes associated with construction, school and curve zones. A continuous navigation function was provided in two of the three conditions to examine the effect of navigation information alone and multiple sources of information on driving performance. Driving performance measures known to be related to distraction as well as subjective usability and workload measures were used to help identify potential distraction associated with the IVS information. The project identified some driver effects that may occur when using a commercially available navigation device with in-vehicle signing (IVS) information, such as drivers demonstrating higher speeds associated with some of the System On conditions. Overall, distraction effects were small and not consistent across all zones or conditions. The main conclusion drawn from this study was that the IVS information was considered useful by drivers and resulted in few distraction-related effects. The benefit of advance notification likely outweighs any distraction that may be associated with in-vehicle signing of these zones.Item Deployment of a Snowplow Driver-Assist System(Minnesota Department of Transportation, 2023-06) Davis, Brian; Schwieters, Katelyn; Morris, Nichole L.; Donath, MaxSnowplow operators are often tasked with clearing snow from roadways under challenging conditions. One such situation is low visibility due to falling or blowing snow that makes it difficult to navigate, stay centered in the lane, and identify upcoming hazards. To support snowplow operators working in these conditions, University of Minnesota researchers developed a snowplow driver-assist system that provides the operator with visual and auditory information that is suitable for low-visibility situations. A lane-guidance system uses high-accuracy Global Navigation Satellite System (GNSS) and maps of the roadway to provide information to drivers about their lateral positions. A forward-obstacle-detection system uses forward-facing radar to detect potential hazards in the roadway. The design of the system, and in particular its interface, is guided by extensive user testing to ensure the system is easy to understand, easy to use, and well liked among its users. The system was deployed in two phases over the 2020-2021 and 2021-2022 winter seasons. In total, nine systems were deployed on snowplows across Minnesota, four in the first winter season and an additional five in the second. Participating truck stations represented all eight MnDOT districts as well as Dakota County. Over the course of the deployment, additional user feedback was collected to identify system strengths and areas for improvement. The system was found to be a cost-effective addition to snowplows that increase driver safety, reduce plow downtime, and increase driver efficacy for plowing operations, thus providing support to operators working in demanding, low-visibility conditions.Item Traffic Data Management for Advanced Driver Information Systems(Minnesota Department of Transportation, 1995-05) Shekhar, ShashiAdvanced Traveler Information Systems (ATIS) offer the potential to help a driver find the quickest and safest route to a destination. An effective navigation system requires effective route planning services, which need to provide three facilities: route computation, route evaluation, and route display. This project focuses on route planning algorithms for ATIS. The cost models and performance studies in this report show that single-pair algorithms can outperform traditional algorithms in many situations.