Open Scholarship and Data
Persistent link for this communityhttps://hdl.handle.net/11299/190401
The Digital Conservancy enhances public engagement, transparency, and connections by showcasing University research, engaging in public scholarship, and connecting researchers, students, and the public through open scholarship and curated open data.
Learn more about how to share your scholarship through our Articles and Scholarly Works collection or how University affiliates can contribute research data through our Data Repository for digital archiving and access.
Browse
Browsing Open Scholarship and Data by Subject "3D Printing"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Supporting data for "3D printed electrically-driven soft actuators"(2020-06-09) Haghiashtiani, Ghazaleh; Habtour, Ed; Park, Sung-Hyun; Gardea, Frank; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research GroupSoft robotics is an emerging field enabled by advances in the development of soft materials with properties commensurate to their biological counterparts, for the purpose of reproducing locomotion and other distinctive capabilities of active biological organisms. The development of soft actuators is fundamental to the advancement of soft robots and bio-inspired machines. Among the different material systems incorporated in the fabrication of soft devices, ionic hydrogel–elastomer hybrids have recently attracted vast attention due to their favorable characteristics, including their analogy with human skin. Here, we demonstrate that this hybrid material system can be 3D printed as a soft dielectric elastomer actuator (DEA) with a unimorph configuration that is capable of generating high bending motion in response to an applied electrical stimulus. We characterized the device actuation performance via applied (i) ramp-up electrical input, (ii) cyclic electrical loading, and (iii) payload masses. A maximum vertical tip displacement of 9.78 ± 2.52 mm at 5.44 kV was achieved from the tested 3D printed DEAs. Furthermore, the nonlinear actuation behavior of the unimorph DEA was successfully modeled using an analytical energetic formulation and a finite element method (FEM).Item Supporting Data for "3D Printed Flexible Organic Light-Emitting Diode Displays"(2021-10-26) Su, Ruitao; Park, Sung H; Ouyang, Xia; Ahn, Song I; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; University of Minnesota McAlpine Research GroupThe ability to fully 3D print active electronic and optoelectronic devices will enable novel device form factors via strategies untethered from conventional microfabrication facilities. Currently, the performance of 3D printed optoelectronics can suffer from nonuniformities in the solution-deposited active layers and unstable polymer-metal junctions. Here we demonstrate a multimodal printing methodology that results in fully 3D printed flexible organic light-emitting diode displays. The electrodes, interconnects, insulation, and encapsulation are all extrusion printed, while the active layers are spray printed. Spray printing leads to improved layer uniformity via suppression of directional mass transport in the printed droplets. By exploiting the viscoelastic oxide surface of the printed cathode droplets, a mechanical reconfiguration process is achieved to increase the contact area of the polymer-metal junctions. The uniform cathode array is intimately interfaced with the top interconnects. This hybrid approach creates a fully 3D printed flexible 8×8 display with all pixels turning on successfully.Item Supporting data for "3D Printed Self-Supporting Elastomeric Structures for Multifunctional Microfluidics"(2020-07-30) Su, Ruitao; Wen, Jiaxuan; Su, Qun; Wiederoder, Michael S; Koester, Steven J; Uzarski, Joshua R; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; University of Minnesota McAlpine Research GroupMicrofluidic devices fabricated via soft lithography have demonstrated compelling applications in areas such as rapid biochemical assays, lab-on-a-chip diagnostics, DNA microarrays and cell analyses. These technologies could be further developed by directly integrating microfluidics with electronic sensors and curvilinear substrates as well as reducing the human-centric fabrication processes to improve throughput. Current additive manufacturing methods, such as stereolithography and multi-jet printing, tend to contaminate substrates due to uncured resins or supporting materials that are subsequently evacuated to create hollow fluid passages. Here we present a printing methodology based on precisely extruding viscoelastic inks into self-supporting structures, creating elastomeric microchannels and chambers without requiring sacrificial materials. We demonstrate that, in the sub-millimeter regime, the yield strength of the as-extruded silicone ink is sufficient to prevent creep under the gravitational loading within a certain angular range. Printing toolpaths are specifically designed to realize leakage-free connections between channels and chambers, T-shaped intersections and overlapping channels. The self-supporting microfluidic structures enable the automatable fabrication of multifunctional devices, including multi-material mixers, microfluidic-integrated sensors, automation components and 3D microfluidics.Item Supporting data for "3D Printed Silicon Nanocrystal Light Emitting Diodes"(2020-05-20) Su, Ruitao; Park, Sung Hyun; Li, Zhaohan; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research GroupThe application of 3-D printing to the fabrication of light emitting diode (LED) requires the ability to integrate materials with distinct properties into one functional device by tuning the printability of materials and precisely confining the cured patterns within the predesigned 3-D structure. To meet this goal, material properties, e.g., viscosity, surface tension and degree of crosslinking are optimized to improve the compatibility with the 3-D printing technique. Particularly, silicon nano crystal (SiNC), the nontoxic active material for the printed LED, is investigated in terms of controllable dispensing of the solution-based material as well as surface roughness and uniformity of the printed layer. With the successful red-IR light emission from the printed SiNC-LED, 3-D printing displays the potential to fabricate optoelectronic devices that are flexible, biocompatible and conforming to the surface shape of the target object in a freeform manner.Item Supporting Data for 3D Printed Skin-Interfaced UV-Visible Hybrid Photodetectors(2022-02-16) Ouyang, Xia; Su, Ruitao; Ng, Daniel Wai Hou; Han, Guebum; Pearson, David R; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; University of Minnesota McAlpine Research GroupPhotodetectors that are intimately interfaced with human skin and measure real-time optical irradiance are appealing in the medical profiling of photosensitive diseases. Developing compliant devices for this purpose requires the fabrication of photodetectors with ultraviolet (UV)-enhanced broadband photoresponse and high mechanical flexibility, to ensure precise irradiance measurements across the spectral band critical to dermatological health when directly applied onto curved skin surfaces. Here, we report a fully 3D printed flexible UV-visible photodetector array that incorporates a hybrid organic-inorganic material system and is integrated with a custom-built portable console to continuously monitor broadband irradiance in-situ. The active materials are formulated by doping polymeric photoactive materials with zinc oxide nanoparticles in order to improve the UV photoresponse and trigger a photomultiplication effect. We demonstrate the ability of our stand-alone skin-interfaced light intensity monitoring system to detect natural irradiance within the wavelength range of 310 nm to 650 nm for nearly 24 hours.