Browsing by Author "Wirth, Christian"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The global spectrum of plant form and function(2016) Díaz, Sandra; Kattge, Jens; Cornelissen, Johannes H C; Wright, Ian J; Lavorel, Sandra; Dray, Stéphane; Reu, Björn; Kleyer, Michael; Wirth, Christian; Prentice, I. Colin; Garnier, Eric; Bönisch, Gerhard; Westoby, Mark; Poorter, Hendrik; Reich, Peter B; Moles, Angela T; Dickie, John; Gillison, Andrew N; Zanne, Amy E; Chave, Jérôme; Wright, S. Joseph; Sheremet’ev, Serge N; Jactel, Hervé; Baraloto, Christopher; Cerabolini, Bruno; Pierce, Simon; Shipley, Bill; Kirkup, Donald; Casanoves, Fernando; Joswig, Julia S; Günther, Angela; Falczuk, Valeria; Rüger, Nadja; Mahecha, Miguel D; Gorné, Lucas DEarth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.Item The imprint of plants on ecosystem functioning: A data-driven approach(Elsevier, 2015) Musavi, Talie; Mahecha, Miguel D; Migliavacca, Mirco; Reichstein, Markus; van de Weg, Martine Janet; van Bodegom, Peter M; Bahn, Michael; Wirth, Christian; Reich, Peter B; Schrodt, Franziska; Kattge, JensTerrestrial ecosystems strongly determine the exchange of carbon, water and energy between the biosphere and atmosphere. These exchanges are influenced by environmental conditions (e.g., local meteorology, soils), but generally mediated by organisms. Often, mathematical descriptions of these processes are implemented in terrestrial biosphere models. Model implementations of this kind should be evaluated by empirical analyses of relationships between observed patterns of ecosystem functioning, vegetation structure, plant traits, and environmental conditions. However, the question of how to describe the imprint of plants on ecosystem functioning based on observations has not yet been systematically investigated. One approach might be to identify and quantify functional attributes or responsiveness of ecosystems (often very short-term in nature) that contribute to the long-term (i.e., annual but also seasonal or daily) metrics commonly in use. Here we define these patterns as “ecosystem functional properties”, or EFPs. Such as the ecosystem capacity of carbon assimilation or the maximum light use efficiency of an ecosystem. While EFPs should be directly derivable from flux measurements at the ecosystem level, we posit that these inherently include the influence of specific plant traits and their local heterogeneity. We present different options of upscaling in situ measured plant traits to the ecosystem level (ecosystem vegetation properties – EVPs) and provide examples of empirical analyses on plants’ imprint on ecosystem functioning by combining in situ measured plant traits and ecosystem flux measurements. Finally, we discuss how recent advances in remote sensing contribute to this framework.