Browsing by Author "Wenzel, Everett"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Heat transfer to droplets in developing boundary layers at low capillary numbers(2014-08) Wenzel, EverettThis thesis describes the heating rate of a small liquid droplet in a developing boundary layer wherein the boundary layer thickness scales with the droplet radius. Surface tension modifies the nature of thermal and hydrodynamic boundary layer development, and consequently the droplet heating rate. A physical and mathematical description precedes a reduction of the complete problem to droplet heat transfer in an analogy to Stokes' first problem, which is numerically solved by means of the Lagrangian volume of fluid methodology.For Reynolds numbers of order one, the dispersed phase Prandtl number significantly influences the droplet heating rate only in the transient period when the thermal boundary layer first reaches the droplet surface. As the dispersed phase Prandtl number increases, so does the duration of the transient. At later times, when the the droplet becomes fully engulfed by the boundary layer, the heating rate becomes a function of only the constant heat flux boundary condition. This characteristic holds for all Peclet and Weber numbers, but the spatial behavior of the droplet differs for small and large Peclet and Weber numbers.Simulation results allow for the development of a predictive tool for the boiling entry length of dilute systems in channel flow. The tool relies on an assumption of temperature equivalency between the droplet and the thermal boundary layer evaluated in absence of the dispersed phase, which is supported by the computational results. Solutions for plug and fully developed flow do not differ appreciably, suggesting a precise description of the fluid mechanics is not necessary for an approximation of the boiling entry length. Future experimental work is required to validate the predictive models derived in this thesis.Item Methods for the Modeling and Simulation of Sprays and Other Interfacial Flows(2019-09) Wenzel, EverettInterfacial multiphase flows involve the motion of at least two fluids separated by surface tension. Atomizing interfacial flows, colloquially known as sprays, are among the most important fluid dynamic systems because of their ubiquity; power generation, delivery of aerosolized medicines, and productive produce farming all depend fundamentally on the detailed control of sprays. Atomization remains poorly understood because of a historical and persisting inability to accurately and affordably measure the dynamics inside and near the spray orifice outlet -- it is therefore desirable to be able to numerically simulate sprays with high fidelity. This dissertation presents computational methods that aim to improve current shortcomings in the modeling and simulation of sprays. Accurately characterizing the interfacial curvature of poorly-resolved liquid structures is addressed by deriving a series of finite particle methods for computing curvature. The methods are verified in analytical curvature tests, and validated against the oscillation frequency of ethanol droplets in air. The finite particle method, leveraging dynamic length scale modification, is demonstrated to out-perform the widely-used height function approach. Tracking the location of interfaces is also addressed, for which a coupled Eulerian-Lagrangian point mass particle scheme is introduced that preserves a well-distributed particle field, can be applied to an arbitrary number of fluids, and does not limit the simulation time step. The Eulerian-Lagrangian method is demonstrated to out-perform contemporary geometric volume of fluid methods at resolutions relevant to spray simulation in a variety of analytical phase tracking tests, and is dynamically evaluated by simulating extending three-phase elliptical regions, droplet dynamics, and Rayleigh-Taylor instabilities. The Eulerian-Lagrangian method is then extended to an approach for consistently and conservatively solving multiphase convection-diffusion problems -- this extension is verified via two analytical heat transfer problems, and robustness is demonstrated by simulating heated air blast atomization. Each of these tests conserves thermal energy and preserves boundedness of the temperature field. This dissertation concludes by outlining paths for consistently and conservatively solving the multiphase Navier-Stokes equations and the multiphase large eddy simulation equations in the coupled Eulerian-Lagrangian point mass particle framework.