Browsing by Author "Verhoeven, Michael R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Complete Data and Analysis for: Niche models differentiate potential impacts of two aquatic invasive plant species on native macrophytes(2021-01-22) Verhoeven, Michael R.; Glisson, Wesley J.; Larkin, Daniel J.; michael.verhoeven.mrv@gmail.com; Verhoeven, Michael R; Minnesota Aquatic Invasive Species Research CenterThe goal of our study was to elucidate the mechanisms by which two invasive aquatic plant species (Myriophyllum spicatum and Potamogeton crispus) interact with native plant communities in lakes in Minnesota, USA. We used an observational dataset of aquatic plant occurrences—and associated light availability, depth, and temperature—to construct probabilistic models of the ecological niches of 34 aquatic plant species. We then compared shared-ness of these niches between the two invasive aquatic plants and 32 native species to infer the degree of direct competitive interaction. This repository contains the complete dataset as a comma-separated-value file and Program R code necessary to replicate the data prep, exploration, analysis, and visualizations presented in the manuscript.Item Complete Data for: Desiccation tolerance of the invasive alga starry stonewort (Nitellopsis obtusa) as an indicator of overland spread risk(2021-10-13) Glisson, Wesley J.; Wagner, Carli K.; Verhoeven, Michael R.; Muthukrishnan, Ranjan; Contreras-Rangel, Rafael; Larkin, Daniel J.; wjglisson@gmail.com; Glisson, Wesley, J; Minnesota Aquatic Invasive Species Research CenterThe ability of invasive macrophytes to survive out of water, i.e., their desiccation tolerance, is an important indicator of capacity for spread to new waterbodies through overland transport. Invasion by the alga starry stonewort (Nitellopsis obtusa [Desv. in Loisel.] J. Groves; Characeae) in North America is likely driven via overland transport, but little is known regarding its ability to remain viable out of water. We conducted laboratory and outdoor experiments to evaluate desiccation tolerance of N. obtusa propagules, including single stem fragments, small and large clumps of fragments, and bulbils (asexual reproductive structures). Propagules were removed from water after 15 min to 5 d to identify desiccation thresholds. The data from these experiments are documented and available here for public availability and use.