Browsing by Author "University of Minnesota Affordance Perception-Action Lab"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item APAL "Sensitivity to changes in dynamic affordances for walking on land and at sea" Data Sets(2019-09-17) Walter, Hannah; Li, Ruixuan; Peterson, Nicolette; Stoffregen, Thomas; Wagman, Jeffrey; walte666@umn.edu; Walter, Hannah; University of Minnesota Affordance Perception-Action LabWe investigated the perception of affordances for walking along a narrow path. We asked whether participants could perceive changes in affordances brought about by manipulation of properties of the body, or of the environment, without direct practice of the to-be-perceived affordance, and without external feedback about the accuracy of perception. In Experiment 1, participants made a series of 8 judgments of how far they could walk along a narrow path either, 1) without added weight, 2) while wearing a weighted vest, or 3) while wearing weights on their ankles. Before walking, mean judgments were lower when wearing weights than in the no-weight condition. In addition, in both weight conditions judgments changed across the series of 8 judgments, in the direction of greater accuracy. Control of the body in walking also can be influenced by motion of the ground surface, as commonly happens in vehicles. In Experiment 2, on a ship at sea, we evaluated the effects of walking with or without weight added to the body at the ankles. We again asked participants (experienced maritime crewmembers) to judge how far they could walk along a narrow path, with versus without ankle weights. As in Experiment 1, judgments made before walking mirrored the observed differences in walking performance. In addition, we again found evidence that judgment improved (without walking practice, or feedback) over the series of judgments. We conclude that participants were sensitive to (and spontaneously learned about) how affordances for walking were influenced by changes in the dynamics of body and the environment.Item APAL Coupling Study 2019(2019-03-04) Walter, Hannah; Li, Ruixuan; Munafo, Justin; Curry, Christopher; Peterson, Nicolette; Stoffregen, Thomas; walte666@umn.edu; Walter, Hannah; University of Minnesota Affordance Perception-Action LabMotion sickness is preceded by differences in the quantitative kinematics of body sway between individuals who (later) become sick and those who do not. In existing research, this effect has been demonstrated only in measures of body sway, relative to the earth. However, body sway can become coupled with imposed oscillatory motion of the illuminated environment, and the nature of this coupling may differ between individuals who become sick and those who do not. We asked whether body sway would become coupled to complex oscillations of the illuminated environment, and whether individual differences in such coupling might be precursors of motion sickness. Standing participants were exposed to complex oscillation of the illuminated environment. We examined the strength of coupling as a function of time during exposure. Following exposure, some participants reported motion sickness. The nature and temporal evolution of coupling differed between participants who later reported motion sickness and those who did not. Our results show that people can couple the complex dynamics of body sway with complex imposed motion, and that differences in the nature of this coupling are related to the risk of motion sickness.