Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Author

  1. Home
  2. Browse by Author

Browsing by Author "Underhill, Anna"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Using High-Throughput Phenotyping To Investigate The Genetic Bases Of Quantitative Traits In Hybrid Wine Grape (Vitis Spp.)
    (2019-04) Underhill, Anna
    High-throughput phenotyping methods have gained popularity in the plant sciences due to their potential to more quickly collect data, reduce human error, and investigate plant characteristics in new ways. In grapes, many economically important traits are quantitative, varying across a spectrum and displaying diverse phenotypes. Though rating scales exist for such traits, their usefulness can be limited by their ability to capture variation across populations; additionally, they require judgement that can vary based on the individual scoring the trait. Automated systems can be used to remedy these issues, eliminating subjectivity and more fully describing phenotypic variation. In these experiments, a semi-automated image analysis system was used to evaluate fruit cluster compactness and berry color in a multispecies hybrid wine grape (Vitis spp.) population. First, color-based image segmentation was used to isolate components of the fruit cluster morphology. Berry color was quantified using several different color spaces, and a MATLAB program was written to measure several morphological components to evaluate cluster compactness. Both color and compactness traits were used to perform quantitative trait loci (QTL) mapping, where associations between the traits and genetic regions were identified. Known QTL for berry color on chromosome 2 were identified, along with several minor QTL associated with color and anthocyanin content. Image-derived traits were associated with known QTL such as the chromosome 9 rachis length QTL, and also identified other regions of interest relating to cluster compactness. Altogether, these projects demonstrate the advantages of high-throughput phenotyping methods and their ability to identify new variation among quantitative traits.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues