Browsing by Author "Tjoelker, Mark G"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Adaptation to changing environment in Scots pine populations across a latitudinal gradient(1998) Oleksyn, Jacek; Tjoelker, Mark G; Reich, Peter BIn several growth chamber and field experiments we examined the growth response of Scots pine (Pinus sylvestris L.) populations from a wide latitudinal range to temperature and photoperiod. The duration of the shoot elongation period of one-year-old seedlings was affected by temperature and photoperiod. In contrasting temperatures, 23/20 °C, 20/17 °C, and 17/14 °C (day/night), shoot elongation period for all populations was shortest in the high and longest in the low temperature treatments. The northern populations from 61–57°N ceased height growth earlier than the other populations in the southern 50°N photoperiod. The order of growth cessation among populations at 50°N in the chamber experiment and at 52°N in the field experiment was similar and related to observed population differences in terminal leader growth and total tree height. Since the length of growing season is under strong environmentally-mediated genetic control in Scots pine, potential climatic changes such as increasing temperature will probably alter the length and timing of growth in aboveground tree parts, but likely in the opposite direction (a shorter growing season) than has been often hypothesized (a longer growing season). Tree-ring analyses of a provenance experiment established in 1912 indicate that the main climatic factors that limited ring-width growth in Scots pine were air temperatures in the winter months of December through March. Low winter temperatures were followed by the formation of narrow rings over the next summer. Based on responses to temperature, Scots pine populations from the continuous European range can be divided in several geographic groups along a latitudinal gradient. Our results suggest that in developing new models to predict the response of Scots pine to changing environmental conditions, it is necessary to include intraspecific differentiation in acclimation and adaptation to environmental factors.Item Biological scaling: Does the exception prove the rule? (Reply)(Nature Publishing Group, 2007) Reich, Peter B; Tjoelker, Mark G; Machado, Jose-Luis; Oleksyn, JacekItem Climate determines vascular traits in the ecologically diverse genus Eucalyptus(Wiley, 2016) Pfautsch, Sebastian; Harbusch, Marco; Wesolowski, Anita; Smith, Renee; Macfarlane, Craig; Tjoelker, Mark G; Reich, Peter B; Adams, Mark ACurrent theory presumes that natural selection on vascular traits is controlled by a trade-off between efficiency and safety of hydraulic architecture. Hence, traits linked to efficiency, such as vessel diameter, should show biogeographic patterns; but critical tests of these predictions are rare, largely owing to confounding effects of environment, tree size and phylogeny. Using wood sampled from a phylogenetically constrained set of 28 Eucalyptus species, collected from a wide gradient of aridity across Australia, we show that hydraulic architecture reflects adaptive radiation of this genus in response to variation in climate. With increasing aridity, vessel diameters narrow, their frequency increases with a distribution that becomes gradually positively skewed and sapwood density increases while the theoretical hydraulic conductivity declines. Differences in these hydraulic traits appear largely genotypic in origin rather than environmentally plastic. Data reported here reflect long-term adaptation of hydraulic architecture to water availability. Rapidly changing climates, on the other hand, present significant challenges to the ability of eucalypts to adapt their vasculature.Item Convergence in the temperature response of leaf respiration across biomes and plant functional types(2016) Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-De La Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen KPlant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.Item Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis(2016) Aspinwall, Michael J; Drake, John E; Campany, Courtney; Vårhammar, Angelica; Ghannoum, Oula; Tissue, David T; Reich, Peter B; Tjoelker, Mark GUnderstanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair) or ambient Tair + 3°C (i.e. ‘warmed’). We measured light- and CO2-saturated net photosynthesis (Amax) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source–sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming.Item Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?(Wiley, 2016) Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V. M.; Medlyn, Belinda E; Duursma, Remko AGiven the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra), GPP and their ratio (Ra/GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra. Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra/GPP) and the mean daily temperature. Thus, warming significantly increased Ra/GPP by moving plants to higher positions on the shared Ra/GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra/GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation.Item Global convergence in leaf respiration from estimates of thermal acclimation across time and space(Wiley, 2015) Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, KaoruRecent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe.Item Needle nutrients in geographically diverse Pinus sylvestris L. populations(2002) Oleksyn, Jacek; Reich, Peter B; Zythowiak, Roma; Karolewski, Piotr; Tjoelker, Mark GNutrient availability differs across climatic gradients, yet the role of genetic variation in potentially adaptive traits related to nutrient acquisition remains poorly understood. We examined needles of diverse Scots pine provenances grown under common-garden conditions throughout their entire life span. Based on similarities in nutrient concentration patterns, two groups of populations were identified. One comprised northern populations from 60° to 56° N, and another included populations from locations between 56° and 49° N. Northern populations sustained significantly higher concentrations of N, P, Ca, Mg, Na, Zn, Cu and Pb. Only K concentration was persistently lower in northern plants. We conclude that intraspecific genetic differences exist in foliage nutrient concentration among diverse populations. Since in northern conditions nutrient availability is often limited as a result of interactions between temperature, litter quality and its mineralization, a tendency toward higher foliage concentrations of macronutrients can be an adaptive feature enhancing plants metabolic activity in their native habitats.Item Universal scaling of respiratory metabolism, size and nitrogen in plants(Nature Publishing Group, 2006) Reich, Peter B; Tjoelker, Mark G; Machado, Jose-Luis; Oleksyn, JacekThe scaling of respiratory metabolism to body size in animals is considered to be a fundamental law of nature1–11, and there is substantial evidence for an approximate 3 4-power relation. Studies suggest that plant respiratory metabolism also scales as the 3 4-power of mass12–14, and that higher plant and animal scaling follow similar rules owing to the predominance of fractal-like transport networks and associated allometric scaling8–14. Here, however, using data obtained from about 500 laboratory and fieldgrown plants from 43 species and four experiments, we show that whole-plant respiration rate scales approximately isometrically (scaling exponent < 1) with total plant mass in individual experiments and has no common relation across all data. Moreover, consistent with theories about biochemically based physiological scaling15–18, isometric scaling of whole-plant respiration rate to total nitrogen content is observed within and across all data sets, with a single relation common to all data. This isometric scaling is unaffected by growth conditions including variation in light, nitrogen availability, temperature and atmospheric CO2 concentration, and is similar within or among species or functional groups. These findings suggest that plants and animals follow different metabolic scaling relations, driven by distinct mechanisms.Item The worldwide leaf economics spectrum(Nature Publishing Group, 2004) Wright, Ian J; Reich, Peter B; Westoby, Mark; Ackerly, David D; Baruch, Zdravko; Bongers, Frans; Cavender-Bares, Jeannine; Chapin, Terry; Cornelissen, Johannes H C; Diemer, Matthias; Flexas, Jaume; Garnier, Eric; Groom, Philip K; Gulias, Javier; Hikosaka, Kouki; Lamont, Byron B; Lee, Tali; Lee, William; Lusk, Christopher; Midgley, Jeremy J; Navas, Marie-Laure; Niinemets, Ülo; Oleksyn, Jacek; Osada, Noriyuki; Poorter, Hendrik; Poot, Pieter; Prior, Lynda; Pyankov, Vladimir I; Roumet, Catherine; Thomas, Sean C; Tjoelker, Mark G; Veneklaas, Erik J; Villar, RafaelBringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.