Browsing by Author "Tilman, David"
Now showing 1 - 17 of 17
- Results Per Page
- Sort Options
Item Biodiversity and ecosystem stability in a decade-long grassland experiment(Nature Publishing Group, 2006) Tilman, David; Reich, Peter B; Knops, Johannes M HHuman-driven ecosystem simplification has highlighted questions about how the number of species in an ecosystem influences its functioning. Although biodiversity is now known to affect ecosystem productivity1–6, its effects on stability are debated6–13. Here we present a long-term experimental field test of the diversity–stability hypothesis. During a decade of data collection in an experiment that directly controlled the number of perennial prairie species4 , growing-season climate varied considerably, causing year-to-year variation in abundances of plant species and in ecosystem productivity. We found that greater numbers of plant species led to greater temporal stability of ecosystem annual aboveground plant production. In particular, the decadal temporal stability of the ecosystem, whether measured with intervals of two, five or ten years, was significantly greater at higher plant diversity and tended to increase as plots matured. Ecosystem stability was also positively dependent on root mass, which is a measure of perenniating biomass. Temporal stability of the ecosystem increased with diversity, despite a lower temporal stability of individual species, because of both portfolio (statistical averaging) and overyielding effects. However, we found no evidence of a covariance effect. Our results indicate that the reliable, efficient and sustainable supply of some foods (for example, livestock fodder), biofuels and ecosystem services can be enhanced by the use of biodiversity.Item Biodiversity as a barrier to ecological invasion(Nature Publishing Group, 2002) Kennedy, Theodore A; Naeem, Shahid; Howe, Katherine M; Knops, Johannes M H; Tilman, David; Reich, Peter BBiological invasions are a pervasive and costly environmental problem1, 2 that has been the focus of intense management and research activities over the past half century. Yet accurate predictions of community susceptibility to invasion remain elusive. The diversity resistance hypothesis, which argues that diverse communities are highly competitive and readily resist invasion3, 4, 5, is supported by both theory6 and experimental studies7, 8, 9, 10, 11, 12, 13, 14 conducted at small spatial scales. However, there is also convincing evidence that the relationship between the diversity of native and invading species is positive when measured at regional scales3, 11, 15, 16. Although this latter relationship may arise from extrinsic factors, such as resource heterogeneity, that covary with diversity of native and invading species at large scales, the mechanisms conferring greater invasion resistance to diverse communities at local scales remain unknown. Using neighbourhood analyses, a technique from plant competition studies17, 18, 19, we show here that species diversity in small experimental grassland plots enhances invasion resistance by increasing crowding and species richness in localized plant neighbourhoods. Both the establishment (number of invaders) and success (proportion of invaders that are large) of invading plants are reduced. These results suggest that local biodiversity represents an important line of defence against the spread of invaders.Item Biodiversity increases the resistance of ecosystem productivity to climate extremes(Nature Publishing Group, 2015) Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T. Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A; Polley, H. Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, NicoIt remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.Item A Blueprint for Creating The Institute on the Environment for the University of Minnesota(University of MInnesota: Provost's Advisory Committee for the Institute on the Environment, 2006-09-25) Swackhamer, Deborah; Polasky, Stephen; Foufoula-Georgiou, Efi; Johnson, Lucinda; Kapuscinski, Anne; Karkkainen, Bradley; McMurry, Peter; Mulla, David; Reich, Peter; Thorleifson, Harvey; Tilman, David; Binks, JonathanIn the words of University of Minnesota President Robert H. Bruininks: “The environment poses such a broad and important array of interrelated issues that the participation of scholars from diverse fields will be critical to our efforts to understand and offer solutions to protect our natural world.” This document lays out the anticipated role, structure and operation, or “blueprint,” of a new University of Minnesota Institute on the Environment (IonE).Item Fire suppression and ecosystem carbon storage(Ecological Society of America, 2000) Tilman, David; Reich, Peter B; Phillips, Hope; Menton, Mary; Patel, Ami; Vos, Erin; Peterson, David; Knops, J;A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores. Specifically, compared to the historical fire regime, fire suppression led to an average of 1.8 Mg·ha−1·yr−1 of C storage, with most carbon stored in woody biomass. Forest floor carbon stores were also significantly impacted by fire frequency, but there were no detectable effects of fire suppression on carbon in soil and fine roots combined, or in woody debris. Total ecosystem C stores averaged ∼110 Mg/ha in stands experiencing presettlement fire frequencies, but ∼220 Mg/ha in stands experiencing fire suppression. If comparable rates of C storage were to occur in other ecosystems in response to the current extent of fire suppression in the United States, fire suppression in the USA might account for 8–20% of missing global carbon.Item Further re-analyses looking for effects of phylogenetic diversity on community biomass and stability(Wiley, 2015) Cardinale, Bradley J; Venail, Patrick; Gross, Kevin; Oakley, Todd H; Narwani, Anita; Allan, Eric; Flombaum, Pedro; Joshi, Jasmin; Reich, Peter B; Tilman, David; van Ruijven, JasperItem High plant diversity is needed to maintain ecosystem services(Nature Publishing Group, 2011) Isbell, Forest; Calcagno, Vincent; Hector, Andy; Connolly, John; Harpole, W Stanley; Reich, Peter B; Scherer-Lorenzen, Michael; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J.; Zavaleta, Erika S.; Loreau, MichelBiodiversity is rapidly declining worldwide1, and there is consensus that this can decrease ecosystem functioning and services2, 3, 4, 5, 6, 7. It remains unclear, though, whether few8 or many9 of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered9; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years10, 11, 12, 13, 14, places15, 16, functions14, 17, 18 or environmental change scenarios12, 19, 20, 21, 22. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions7, many species are needed to maintain multiple functions at multiple times and places in a changing world.Item Nitrogen limitation constrains sustainability of ecosystem response to CO2(Nature Publishing Group, 2006) Reich, Peter B; Hobbie, Sarah E; Lee, Tali; Ellsworth, David S; West, Jason B; Tilman, David; Knops, Johannes M H; Naeem, Shahid; Trost, JaredEnhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world1, 2, 3, 4, 5, 6, 7, 8, 9. Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation5, 7, 8, 9, soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Item Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors(Wiley, 2015) Thakur, Madhav Prakash; Milcu, Alexandru; Manning, Pete; Niklaus, Pascal A; Roscher, Christiane; Power, Sally; Reich, Peter B; Scheu, Stefan; Tilman, David; Ai, Fuxun; Guo, Hongyan; Ji, Rong; Pierce, Sarah; Ramirez, Nathaly Guerrero; Richter, Annabell Nicola; Steinauer, Katja; Strecker, Tanja; Vogel, Anja; Eisenhauer, NicoSoil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.Item Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought(The Royal Society, 2016) Craven, Dylan; Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; Van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; De Luca, Enrica; Griffin, John N; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Palmborg, Cecilia; Polley, H Wayne; Reich, Peter B; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P; Tilman, David; Vogel, Anja; Eisenhauer, NicoGlobal change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.Item Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition(Nature Publishing Group, 2001) Reich, Peter B; Knops, Jean; Tilman, David; Craine, Joseph; Ellsworth, David; Tjoelker, Mark; Lee, Tali; Wedin, David; Naeem, Shahid; Bahauddin, Dan; Hendrey, George; Jose, Shibu; Wrage, Keith; Goth, Jenny; Bengston, WendyHuman actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown1, 2. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively1, 2, 3, 4, which might be particularly important in the face of other global changes5, 6. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.Item Public Access and Use of Electronically Archived Data: Ethical Considerations(2001) Davis, Mark A; Tilman, David; Hobbie, Sarah E; Lehman, Clarence L; Reich, Peter B; Knops, Jean M H; Naeem, Shahid; Ritchie, Mark E; Wedin, David AItem Resource limitation in a competitive context determines complex plant responses to experimental resource additions(Ecological Society of America, 2013) Farrior, Caroline E; Tilman, David; Dybzinski, Ray; Reich, Peter B; Levin, Simon A; Pacala, Stephen WAlmost all models of plant resource limitation are grounded in either one or both of two simple conceptual models: Liebig's Minimum Hypothesis (LMH), the idea that plants are limited by the resource in shortest supply, and the Multiple Limitation Hypothesis (MLH), the idea that plants should adjust to their environment so that all essential resources are equally limiting. Despite the differences in their predictions, experiments have so far failed to discriminate between them. In a simple factorial nitrogen and water addition experiment in a Minnesota grassland, we observed shifts in allocation that, as in previous studies, are not all explained by a single theory. We found that leaf biomass responded positively to nitrogen additions but did not respond to water additions. We found that fine-root biomass increased in response to water additions, but only at low nitrogen levels, and that fine-root biomass decreased in response to nitrogen additions, but only at high water levels. To understand these responses we built a physiologically based model of plant competition for water, nitrogen, and space to predict plant allocation to fine roots and leaves. Critically, we include in our model the inherent variability of soil moisture and treat light, water, and nitrogen as resources with distinct mechanistic roles. Experimental results showed that plants were nitrogen and water limited. The model explains the experimental results, under conditions of co-limitation, as follows. Foliage increases with nitrogen additions but not water additions because leaf construction is constrained by nitrogen uptake. When water is added, plants spend a larger fraction of the growing season limited by light (and effectively nitrogen) than by water. Thus, water additions cause fine-root biomass to increase because of the increased importance of nitrogen limitation. The response of fine-root biomass to water additions decreases with nitrogen additions because these additions reduce nitrogen limitation. In general, our results are explained by sequential resource limitation. The rate of carbon assimilation may be limited by a single resource at any one moment, but the identity of the limiting resource(s) changes throughout the growing season.Item Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N(National Academy of Sciences, 2004) Reich, Peter B; Tilman, David; Naeem, Shahid; Ellsworth, David S; Knops, Johannes; Craine, Joseph; Wedin, David; Trost, JaredThe characteristics of plant assemblages influence ecosystem processes such as biomass accumulation and modulate terrestrial responses to global change factors such as elevated atmospheric CO2 and N deposition, but covariation between species richness (S) and functional group richness (F) among assemblages obscures the specific role of each in these ecosystem responses. In a 4-year study of grassland species grown under ambient and elevated CO2 and N in Minnesota, we experimentally varied plant S and F to assess their independent effects. We show here that at all CO2 and N levels, biomass increased with S, even with F constant at 1 or 4 groups. Likewise, with S at 4, biomass increased as F varied continuously from 1 to 4. The S and F effects were not dependent upon specific species or functional groups or combinations and resulted from complementarity. Biomass increases in response to CO2 and N, moreover, varied with time but were generally larger with increasing S (with F constant) and with increasing F (with S constant). These results indicate that S and F independently influence biomass accumulation and its response to elevated CO2 and N.Item Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies(Wiley, 2015) Venail, Patrick; Gross, Kevin; Oakley, Todd H; Narwani, Anita; Allan, Eric; Flombaum, Pedro; Isbell, Forest; Joshi, Jasmin; Reich, Peter B; Tilman, David; van Ruijven, Jasper; Cardinale, Bradley JHundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.Item Transforming the University: Final Recommendations of the Task Force on Undergraduate Reform: Honors(University of Minnesota, 2006-02-03) Sikkink, Kathryn; Tilman, DavidThe quality of a university is measured, in large part, by the quality of its students. At present, the University of Minnesota-Twin Cities is seventh in the Big Ten in percent of students from the top 10% of their high school classes. It is tenth (out of 11) in the Big Ten in its overall retention of students through the end of their first year, retaining 84% of its students versus 96% for the top-ranked Big Ten University. A significant portion of the state’s most talented students attend college out of state, and the University of Minnesota does not bring into Minnesota a comparable share of the best and brightest from other states. If the University of Minnesota is to achieve its goal of becoming one of the top public research universities in the world, and if it is to both retain within the state and attract to the state an increased number of highly talented individuals, the University must create new mechanisms for attracting top students.Item Transforming the University: Preliminary Recommendations of the Task Force on Undergraduate Reform: Honors(2005-12-12) Sikkink, Kathryn; Tilman, DavidIn addition to offering generous and creative scholarships, we must build on our current successes to develop a unified, challenging, and exciting honors program that provides and highlights smaller class sizes, greater one-on-one interactions with faculty, and individual mentoring of Honors Scholars by faculty. If we do so, we believe that we will attract not only the excellent students currently served in our programs, but also the students of equal or greater potential who now do not choose the University of Minnesota.