Browsing by Author "Rapagnani, Rachel M"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Supporting Data for Ring-Opening Copolymerizations of a CO2-derived δ-Valerolactone with ε-Caprolactone and L-Lactide(2024-05-30) Anderson, Ryan A; Fine, Rachel F; Rapagnani, Rachel M; Tonks, Ian A; itonks@umn.edu; Tonks, Ian; University of Minnesota, Tonks groupThese files contain primary data along with associated output from instrumentation supporting all results reported in Anderson et. al. Ring-Opening Copolymerizations of a CO2-derived δ-Valerolactone with ε-Caprolactone and L-Lactide. This work has expanded the synthetic polymer chemistry of the CO2-derived lactone EtVP through ring-opening co-polymerizations with ε-CL and LLA. Polymer properties and microstructures could be tuned through concurrent and se-quential copolymerization strategies, which led to the formation of either block, gradient, or random copolymers. ε-CL block copolymers resulted in semi-crystalline polymers regardless of the molar ratio employed. For LLA, copolymers remained amorphous, and mechanical testing showed improved elasticity relative to PLLA. Furthermore, ε-CL and LLA copolymers could be chemically recycled back to monomer utilizing Sn(Oct)2. While this work lays the foundation for EtVP-based copolymers, investigation into triblocks and other end-of-life options may further improve the potential ap-plications of these CO2-based (co)polymers.Item Supporting Data for Tunable and Recyclable Polyesters from CO2 and Butadiene(2021-10-22) Rapagnani, Rachel M; Dunscomb, Rachel J; Fresh, Alexandra A; Tonks, Ian A; itonks@umn.edu; Tonks, Ian A; University of Minnesota, Department of Chemistry, Tonks groupThese files contain primary data along with associated output from instrumentation supporting all results reported in the referenced manuscript. Findings include: an alternate route to tunable, recyclable polyesters derived from CO2 and butadiene via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg/mol and pendent vinyl sidechains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 ºC, allowing for facile chemical recycling. These results mark the first example of a well-defined polyester derived solely from CO2 and olefins, expanding access to new feedstocks that were once considered unfeasible.