Browsing by Author "Postiglione, William"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Electrochemical control of oxygen stoichiometry and materials properties in ion-gel-gated cobaltite thin films(2023-12) Postiglione, WilliamWide-ranging control of materials properties using applied voltages represents a longstanding goal in physics and technology, particularly for low-power applications. To this end, substantial interest has developed around electric-double-layer transistors (EDLTs) based on functional materials. More recently, electrochemical EDLTs, where ions such as O2-, H+, Li+, etc., are driven into / out of a channel material via voltage, have proven capable of offering unique benefits (including non-volatility) for a variety of novel applications. Cobaltites, such as SrCoO3-δ (SCO) have recently emerged as an archetypal example of electrochemical control of materials properties in electrolyte-gate devices. This is accomplished by voltage-driven redox cycling between two distinct phases: fully oxygenated perovskite (P) (δ ≈ 0) and oxygen-vacancy-ordered brownmillerite (BM) (δ = 0.5). To date, SCO has received the most attention in this regard, despite significant issues with air stability in the P phase, and few alternatives have been considered. Additionally, critical issues of voltage hysteresis and fundamental limits on reversibility and cycling endurance remain unaddressed.To address this, using EDLTs based on epitaxial La1-xSrxCoO3-δ (LSCO) thin films, we first investigate the electrochemical reduction that is known to occur at positive gate voltages (Vg) in such systems, establishing that the P → BM transformation occurs in LSCO over a wide doping range. Importantly, both the P and BM phase of x = 0.5 LSCO are robustly air stable, and the electrochemical reduction behavior was found to be voltage-tunable with both doping and strain. We then leverage this voltage-tuned P → BM transformation to demonstrate large property modulations in electronic transport, magnetism, thermal transport, and optical properties, achieving similar or greater ranges of control than in SCO. Next, to explore the reversibility of the transformation, we performed detailed analysis of Vg hysteresis loops, revealing a wealth of new mechanistic findings, including asymmetric transformations due to differing oxygen diffusivities in the P vs. the BM phase, non-monotonic transformation rates due to the first-order nature of the P-BM transformation, and limits on reversibility due to first-cycle structural degradation. Additionally, using minor hysteresis loops, we demonstrate the first rational design of an optimal Vg cycle, leading to state-of-the-art cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, reversible and non-volatile metal-insulator-metal and ferromagnet-nonferromagnet-ferromagnet cycling, all at ultrathin 10-unit-cell thickness. Finally, to further investigate the magnetic properties of the BM nonferromagnet “OFF” state, we performed neutron diffraction experiments, finding the first direct evidence of antiferromagnetic order in BM-SCO films and identifying weak ferromagnetism in x = 0.5 BM-LSCO. These findings thus significantly advance the understanding of voltage-induced P ↔ BM transformations in cobaltite films and pave the way for future work establishing the ultimate cycling frequency and endurance in such electrolyte-gated devices.Item Mobility Optimization in LaxBa1-xSnO3 Thin Films Deposited via High Pressure Oxygen Sputtering(2017-08) Postiglione, WilliamBaSnO3 (BSO) is one of the most promising semiconducting oxides currently being explored for use in future electronic applications. BSO possesses a unique combination of high room temperature mobility (even at very high carrier concentrations, >1019 cm-3), wide band gap, and high temperature stability, making it a potentially useful material for myriad applications. Significant challenges remain however in optimizing the properties and processing of epitaxial BSO, a critical step towards industrial applications. In this study we investigate the viability of using high pressure oxygen sputtering to produce high mobility La-doped BSO thin films. In the first part of our investigation we synthesized, using solid state reaction, phase-pure stoichiometric polycrystalline 2% La-doped BaSnO3 for use as a target material in our sputtering system. We verified the experimental bulk lattice constant, 4.117 Å, to be in good agreement with literature values. Next, we set out to optimize the growth conditions for DC sputtering of La doped BaSnO3. We found that mobility for all our films increased monotonically with deposition temperature, suggesting the optimum temperature for deposition is >900°C and implicating a likely improvement in transport properties with post-growth thermal anneal. We then preformed systematic studies aimed at probing the effects of varying thickness and deposition rate to optimize the structural and electronic transport properties in unbuffered BSO films. In this report we demonstrate the ability to grow 2% La BSO thin films with an effective dopant activation of essentially 100%. Our films showed fully relaxed (bulk), out-of-plane lattice parameter values when deposited on LaAlO3, MgO, and (LaAlO3)0.3(Sr2TaAlO6)0.7 substrates, and slightly expanded out-of-plane lattice parameters for films deposited on SrTiO3, GdScO3, and PrScO3 substrates. The surface roughness’s of our films were measured via AFM, and determined to be on the nm scale or better. Specular XRD measurements confirmed highly crystalline films with narrow rocking curve FWHMs on the order of 0.05°. The optimum thickness found to maximize mobility was around 100 nm for films deposited at ~8 Å/min. These films exhibited room temperature mobilities in excess of 50 cm2V-1s 1 at carrier concentrations ~3 x 1020 cm-3 across 4 different substrate materials (LaAlO3, SrTiO3, GdScO3, and PrScO3). Contrary to expectations, our findings showed no dependence of mobility on substrate mismatch, indicating that threading dislocations are either not the dominant scattering source, or that threading dislocation density in the films was constant regardless of the substrate. The highest mobility film achieved in this study, 70 cm2V 1s 1, was measured for a film grown at a considerably slower rate (~2 Å/min) and lower thickness (~380 Å). Said film was deposited on a PrScO3 (110) substrate, the most closely lattice matched substrate commercially available for BSO (–2.2% pseudo-cubic). This film showed a high out-of-plane lattice parameter from X-ray diffraction (aop = 4.158 Å), suggesting a significantly strained film. This result highlights the possibility of sputtering coherent, fully strained, BSO films, far exceeding the theoretical critical thickness for misfit dislocation formation, on closely lattice matched substrates. Overall, this work validates the concept of high pressure oxygen sputtering to produce high mobility La-doped BSO films. The mobility values reported in this thesis are comparable to those found for films deposited via pulsed laser deposition in previous studies, and represent record values for sputter deposited BSO thin films.