Browsing by Author "Peterson, David W"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum(Ecological Society of America, 2001) Reich, Peter B; Peterson, David W; Wedin, David A; Wrage, KeithMixed tree–grass vegetation is important globally at ecotones between grasslands and forests. To address uncertainties vis-à-vis productivity and nitrogen (N) cycling in such systems we studied 20 mature oak savanna stands, ranging from 90% woody dominated to 80% herbaceous dominated, growing on comparable soils in a 32-yr-old fire frequency experiment in Minnesota, USA. Fire frequencies ranged from almost annual burning to complete fire protection. Across all stands, aboveground net primary productivity (ANPP) ranged from 2 to 12 Mg·ha−1·yr−1, decreased with fire frequency (r2 = 0.59), increased with woody canopy dominance (r2 = 0.83), and increased with soil net N mineralization rates (r2 = 0.79), which varied from 25 to 150 kg·ha−1·yr−1. ANPP was positively related to total biomass (r2 = 0.95), total canopy leaf N content (r2 = 0.88), leaf area index (LAI; r2 = 0.87), annual litterfall N cycling (r2 = 0.70), foliage N concentration (r2 = 0.62), and fine root N concentration (r2 = 0.35), all of which also increased with increasing tree canopy cover. ANPP, soil N mineralization, and estimated root turnover rates increased with woody canopy cover even for stands with similar fire frequency. ANPP and N mineralization both decreased with fire frequency for stands having a comparable percentage of woody canopy cover. Fine root standing biomass increased with increasing grass dominance. However, fine root turnover rate estimated with a nitrogen budget technique decreased proportionally more with increasing grass dominance, and hence fine root productivity decreased along the same gradient. Via several direct and indirect and mutually reinforcing (feedback) effects, the combination of low fire frequency and high tree dominance leads to high rates of N cycling, LAI, and productivity; while the opposite, high fire frequency and high grass dominance, leads to low rates of N cycling, LAI, and productivity. Carbon and N cycling were tightly coupled across the fire frequency and vegetation type gradients.Item Prescribed fire in oak savanna: Fire frequency effects on stand structure and dynamics(2001) Peterson, David W; Reich, Peter BAlthough it is well known that fire can exert strong control on stand structure, composition, and dynamics in savannas and woodlands, the relationship between fire frequency and stand structure has been characterized in few of the world's savanna and woodland ecosystems. To address this issue in temperate oak-dominated ecosystems, we studied the effects of fire frequency on stand structure and dynamics in oak savanna and woodland stands that had been burned 0–26 times in 32 yr, in the Anoka Sand Plain region of Minnesota (USA). Seedling densities declined with increasing fire frequency, but differentially, for northern pin oak (Quercus ellipsoidalis), black cherry (Prunus serotina), serviceberry (Amelanchier sp.), and red maple (Acer rubrum). Bur oak (Q. macrocarpa) seedling density was not sensitive to fire frequency. Frequent burning (at least three fires per decade) prevented development of a sapling layer and canopy ingrowth. Low-frequency burning (fewer than two fires per decade) produced stands with dense sapling thickets. Reductions in overstory density and basal area from 1984 to 1995 were observed for all stands burned two or more times during that period. Basal area declined by 4–7% per year, and density declined by 6–8% per year in stands burned four or more times. Mortality rates in burned stands were higher for northern pin oak (50%) than for bur oak (8%). Northern pin oak mortality was highest for small trees (< 20 cm dbh) and lowest for mature trees (30–40 cm dbh); mortality increased with fire frequency. Bur oak mortality declined with increasing fire frequency. Attempts to preserve and maintain savannas as a viable ecosystem type in this region will require a long-term commitment to restoration-based management, with prescribed fire as a central tool. Burn frequency treatments with four or more fires per decade produce similar reductions in stem density and stand basal area but may lead to unsustainable oak tree populations. Within this general range, fire frequencies at a decadal scale should be chosen to address other management objectives, including suppressing shrubs and promoting increased cover of grasses and other herbaceous species. Fire management with a long-term view may also require periodic respites to allow for new cohorts of mature oak trees.