Browsing by Author "Parker, James"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Forming Long Term Teams to Exploit Synergies among Heterogeneous Agents(2012-05-17) Parker, James; Nunes, Ernesto; Godoy, Julio; Gini, MariaIn this work, we describe how agents can take advantage of synergies among each other and increase their efficiency at accomplishing tasks by working in teams. We present different team structures for heterogeneous agents, which range from static teams that are formed upfront and never change, to dynamic teams where agents can change teams as need arises, to teams that allow only some types of agents to be members. We also develop teaming strategies that are strongly domain specific for the RoboCup Rescue simulation environment. RoboCup Rescue is a simulated environment which is characterized by uncertainty in available information and by severely limited communications among agents. The tasks to be accomplished are saving civilians who are trapped in buildings and preventing fires from spreading in the city. The locations of civilians and fires are not known upfront and have to be discovered. The domain constraints limit the applicability of some popular team formation algorithms and require adaptive strategies. We measure the effectiveness of the various teaming strategies we propose. Our experimental results support the hypothesis that teaming improves performance, and that more specialized and knowledge rich teaming arrangements perform better.Item Task Allocation with Growing Costs(2017-01) Parker, JamesWe examine task allocation when the tasks grow over time and propose a model for the interaction between agents and changing tasks. Our model accounts for both the natural growth of tasks and the effort of the agents at containing such growth. We use the model to reason spatially and temporally to achieve the objective of efficiently coordinate agents, i.e., to produce solutions that minimize the growth of tasks. This problem has a strong temporal component, as both the agents require time to move between tasks and during this time the cost of completing the tasks grow. Three different cases are examined for the agent travel time: very prohibitive where agents can only be assigned once, agents have zero travel time between tasks, and agent reassignment is possible but takes time to travel to a different task. We provide an optimal solution for when agents can only be assigned once. With zero travel time between tasks, we identify optimal solutions for three families of growth functions. New algorithms are proposed for task allocation when the travel time is not zero, and are tested with the modeling of the task growth as inaccurate. A centralized approach is proposed that is the optimal solution in some cases and performs well even when imperfectly modeling the growth. We also propose a distributed coordination algorithm (based on max-sum) that works well even when there are errors in modeling the environment and is shown to outperform other methods in both a simple simulation and the RoboCup Rescue agent simulation.