Browsing by Author "Ouyang, Xia"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Data for 3D Printed Organisms Enabled by Aspiration-Assisted Adaptive Strategies(2024-06-17) Han, Guebum; Khosla, Kanav; Smith, Kieran T; Ng, Daniel Wai Hou; Lee, JiYong; Ouyang, Xia; Bischof, John C; McAlpine, Michael C; hanguebum@gmail.com; Han, Guebum; University of Minnesota McAlpine Research Group; University of Minnesota Bischof Research GroupDevising an approach to deterministically position organisms could impact various fields such as bioimaging, cybernetics, cryopreservation, and organism-integrated devices. This requires continuously assessing the locations of randomly distributed organisms to collect and transfer them to target spaces without harm. Here we developed an aspiration-assisted adaptive printing system that tracks, harvests, and relocates living and moving organisms on target spaces via a pick-and-place mechanism that continuously adapts to updated visual and spatial information about the organisms and target spaces. These adaptive printing strategies successfully positioned a single static organism, multiple organisms in droplets, and a single moving organism on target spaces. Their capabilities were exemplified by printing vitrification-ready organisms in cryoprotectant droplets, sorting live organisms from dead ones, positioning organisms on curved surfaces, organizing organism-powered displays, and integrating organisms with materials and devices in customizable shapes. These printing strategies could ultimately lead to autonomous biomanufacturing methods to evaluate and assemble organisms for a variety of single and multi-organism-based applications.Item Supporting Data for "3D Printed Flexible Organic Light-Emitting Diode Displays"(2021-10-26) Su, Ruitao; Park, Sung H; Ouyang, Xia; Ahn, Song I; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; University of Minnesota McAlpine Research GroupThe ability to fully 3D print active electronic and optoelectronic devices will enable novel device form factors via strategies untethered from conventional microfabrication facilities. Currently, the performance of 3D printed optoelectronics can suffer from nonuniformities in the solution-deposited active layers and unstable polymer-metal junctions. Here we demonstrate a multimodal printing methodology that results in fully 3D printed flexible organic light-emitting diode displays. The electrodes, interconnects, insulation, and encapsulation are all extrusion printed, while the active layers are spray printed. Spray printing leads to improved layer uniformity via suppression of directional mass transport in the printed droplets. By exploiting the viscoelastic oxide surface of the printed cathode droplets, a mechanical reconfiguration process is achieved to increase the contact area of the polymer-metal junctions. The uniform cathode array is intimately interfaced with the top interconnects. This hybrid approach creates a fully 3D printed flexible 8×8 display with all pixels turning on successfully.Item Supporting Data for 3D Printed Skin-Interfaced UV-Visible Hybrid Photodetectors(2022-02-16) Ouyang, Xia; Su, Ruitao; Ng, Daniel Wai Hou; Han, Guebum; Pearson, David R; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; University of Minnesota McAlpine Research GroupPhotodetectors that are intimately interfaced with human skin and measure real-time optical irradiance are appealing in the medical profiling of photosensitive diseases. Developing compliant devices for this purpose requires the fabrication of photodetectors with ultraviolet (UV)-enhanced broadband photoresponse and high mechanical flexibility, to ensure precise irradiance measurements across the spectral band critical to dermatological health when directly applied onto curved skin surfaces. Here, we report a fully 3D printed flexible UV-visible photodetector array that incorporates a hybrid organic-inorganic material system and is integrated with a custom-built portable console to continuously monitor broadband irradiance in-situ. The active materials are formulated by doping polymeric photoactive materials with zinc oxide nanoparticles in order to improve the UV photoresponse and trigger a photomultiplication effect. We demonstrate the ability of our stand-alone skin-interfaced light intensity monitoring system to detect natural irradiance within the wavelength range of 310 nm to 650 nm for nearly 24 hours.