Browsing by Author "Oatley, Benjamin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Characterizing Discriminative Patterns(2011-02-18) Fang, Gang; Wang, Wen; Oatley, Benjamin; NessVan, Brian; Steinbach, Michael; Kumar, VipinDiscriminative patterns are association patterns that occur with disproportionate frequency in some classes versus others, and have been studied under names such as emerging patterns and contrast sets. Such patterns have demonstrated considerable value for classification and subgroup discovery, but a detailed understanding of the types of interactions among items in a discriminative pattern is lacking. To address this issue, we propose to categorize discriminative patterns according to four types of item interaction: (i) driver-passenger, (ii) coherent, (iii) independent additive and (iv) synergistic beyond independent additive. The coherent, additive, and synergistic patterns are of practical importance, with the latter two representing a gain in the discriminative power of a pattern over its subsets. Synergistic patterns are most restrictive, but perhaps the most interesting since they capture a cooperative effect that is more than the sum of the effects of the individual items in the pattern. For domains such as biomedical and genetic research, differentiating among these types of patterns is critical since each yields very different biological interpretations. For general domains, the characterization provides a novel view of the nature of the discriminative patterns in a dataset, which yields insights beyond those provided by current approaches that focus mostly on pattern-based classification and subgroup discovery. This paper presents a comprehensive discussion that defines these four pattern types and investigates their properties and their relationship to one another. In addition, these ideas are explored for a variety of datasets (ten UCI datasets, one gene expression dataset and two genetic-variation datasets). The results demonstrate the existence, characteristics and statistical significance of the different types of patterns. They also illustrate how pattern characterization can provide novel insights into discriminative pattern mining and the discriminative structure of different datasets. Codes for pattern characterization and supplementary documents are available at http://vk.cs.umn.edu/CDPItem Construction and Functional Analysis of Human Genetic Interaction Networks with Genome-wide Association Data(2011-01-18) Fang, Gang; Wang, Wen; Paunic, Vanja; Oatley, Benjamin; Haznadar, Majda; Steinbach, Michael; Van Ness, Brian; Myers, Chad L.; Kumar, VipinMotivation: Genetic interaction measures how different genes collectively contribute to a phenotype, and can reveal functional compensation and buffering between pathways under genetic perturbations. Recently, genome-wide investigation for genetic interactions has revealed genetic interaction networks that provide novel insights both when analyzed independently and when integrated with other functional genomic datasets. For higher eukaryotes such as human, the above reverse-genetics approaches are not straightforward since the phenotypes of interest for higher eukaryotes such as disease onset or survival, are difficult to study in a cell based assay. Results: In this paper, we propose a general framework for constructing and analyzing human genetic interaction networks from genome-wide single nucleotide polymorphism (SNP) datasets used for case-control studies on complex diseases. Specifically, we propose a general approach with three major steps: (1) estimating SNP-SNP genetic interactions, (2) identifying linkage disequilibrium (LD) blocks and mapping SNP-SNP interactions to LD block-block interactions, and (3) functional mapping for LD blocks. We performed two sets of functional analyses for each of the six case-control SNP datasets used in the paper, and demonstrated that (i) genes in LD blocks showing similar interaction profiles tend to be functionally related, and (ii) the network can be used to discover pairs of compensatory gene modules (between-pathway models) in their joint association with a disease phenotype. The proposed framework should provide novel insights beyond existing approaches that either ignore interactions between SNPs or model different SNP-SNP pairs with genetic interactions separately. Furthermore, our study provides evidence that some of the core properties of genetic interaction networks based on reverse genetics in model organisms like yeast are also present in genetic interactions revealed by natural variation in human populations. Availability: Supplementary material http://vk.cs.umn.edu/humanGI