Browsing by Author "Naeem, Shahid"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Biodiversity as a barrier to ecological invasion(Nature Publishing Group, 2002) Kennedy, Theodore A; Naeem, Shahid; Howe, Katherine M; Knops, Johannes M H; Tilman, David; Reich, Peter BBiological invasions are a pervasive and costly environmental problem1, 2 that has been the focus of intense management and research activities over the past half century. Yet accurate predictions of community susceptibility to invasion remain elusive. The diversity resistance hypothesis, which argues that diverse communities are highly competitive and readily resist invasion3, 4, 5, is supported by both theory6 and experimental studies7, 8, 9, 10, 11, 12, 13, 14 conducted at small spatial scales. However, there is also convincing evidence that the relationship between the diversity of native and invading species is positive when measured at regional scales3, 11, 15, 16. Although this latter relationship may arise from extrinsic factors, such as resource heterogeneity, that covary with diversity of native and invading species at large scales, the mechanisms conferring greater invasion resistance to diverse communities at local scales remain unknown. Using neighbourhood analyses, a technique from plant competition studies17, 18, 19, we show here that species diversity in small experimental grassland plots enhances invasion resistance by increasing crowding and species richness in localized plant neighbourhoods. Both the establishment (number of invaders) and success (proportion of invaders that are large) of invading plants are reduced. These results suggest that local biodiversity represents an important line of defence against the spread of invaders.Item Biodiversity increases the resistance of ecosystem productivity to climate extremes(Nature Publishing Group, 2015) Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T. Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A; Polley, H. Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, NicoIt remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.Item Nitrogen limitation constrains sustainability of ecosystem response to CO2(Nature Publishing Group, 2006) Reich, Peter B; Hobbie, Sarah E; Lee, Tali; Ellsworth, David S; West, Jason B; Tilman, David; Knops, Johannes M H; Naeem, Shahid; Trost, JaredEnhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world1, 2, 3, 4, 5, 6, 7, 8, 9. Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation5, 7, 8, 9, soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Item Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought(The Royal Society, 2016) Craven, Dylan; Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; Van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; De Luca, Enrica; Griffin, John N; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Palmborg, Cecilia; Polley, H Wayne; Reich, Peter B; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P; Tilman, David; Vogel, Anja; Eisenhauer, NicoGlobal change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.Item Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition(Nature Publishing Group, 2001) Reich, Peter B; Knops, Jean; Tilman, David; Craine, Joseph; Ellsworth, David; Tjoelker, Mark; Lee, Tali; Wedin, David; Naeem, Shahid; Bahauddin, Dan; Hendrey, George; Jose, Shibu; Wrage, Keith; Goth, Jenny; Bengston, WendyHuman actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown1, 2. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively1, 2, 3, 4, which might be particularly important in the face of other global changes5, 6. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.Item Public Access and Use of Electronically Archived Data: Ethical Considerations(2001) Davis, Mark A; Tilman, David; Hobbie, Sarah E; Lehman, Clarence L; Reich, Peter B; Knops, Jean M H; Naeem, Shahid; Ritchie, Mark E; Wedin, David AItem Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N(National Academy of Sciences, 2004) Reich, Peter B; Tilman, David; Naeem, Shahid; Ellsworth, David S; Knops, Johannes; Craine, Joseph; Wedin, David; Trost, JaredThe characteristics of plant assemblages influence ecosystem processes such as biomass accumulation and modulate terrestrial responses to global change factors such as elevated atmospheric CO2 and N deposition, but covariation between species richness (S) and functional group richness (F) among assemblages obscures the specific role of each in these ecosystem responses. In a 4-year study of grassland species grown under ambient and elevated CO2 and N in Minnesota, we experimentally varied plant S and F to assess their independent effects. We show here that at all CO2 and N levels, biomass increased with S, even with F constant at 1 or 4 groups. Likewise, with S at 4, biomass increased as F varied continuously from 1 to 4. The S and F effects were not dependent upon specific species or functional groups or combinations and resulted from complementarity. Biomass increases in response to CO2 and N, moreover, varied with time but were generally larger with increasing S (with F constant) and with increasing F (with S constant). These results indicate that S and F independently influence biomass accumulation and its response to elevated CO2 and N.