Browsing by Author "Mueller, Kevin E"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Do evergreen and deciduous tree differ in their effects on soil nitrogen availability(Ecological Society of America, 2012) Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David MEvergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (Nmin). We evaluated this hypothesis by compiling published data on net Nmin rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net Nmin rates; net Nmin beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net Nmin rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net Nmin at some sites and lower net Nmin at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net Nmin rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net Nmin are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net Nmin probably depend on site-specific factors such as stand age and soil type.Item Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species(Elsevier, 2016) Mueller, Kevin E; Eisenhauer, Nico; Reich, Peter B; Hobbie, Sarah E; Chadwick, Oliver A; Chorover, Jon; Dobies, Tomasz; Hale, Cynthia M; Jagodziński, Andrzej M; Kałucka, Izabela; Kasprowicz, Marek; Kieliszewska-Rokicka, Barbara; Modrzyński, Jerzy; Rożen, Anna; Skorupski, Maciej; Sobczyk, Łukasz; Stasińska, Małgorzata; Trocha, Lidia K.; Weiner, January; Wierzbicka, Anna; Oleksyn, JacekManagement of biodiversity and ecosystem services requires a better understanding of the factors that influence soil biodiversity. We characterized the species (or genera) richness of 10 taxonomic groups of invertebrate soil animals in replicated monocultures of 14 temperate tree species. The focal invertebrate groups ranged from microfauna to macrofauna: Lumbricidae, Nematoda, Oribatida, Gamasida, Opilionida, Araneida, Collembola, Formicidae, Carabidae, and Staphylinidae. Measurement of invertebrate richness and ancillary variables occurred ∼34 years after the monocultures were planted. The richness within each taxonomic group was largely independent of richness of other groups; therefore a broad understanding of soil invertebrate diversity requires analyses that are integrated across many taxa. Using a regression-based approach and ∼125 factors related to the abundance and diversity of resources, we identified a subset of predictors that were correlated with the richness of each invertebrate group and richness integrated across 9 of the groups (excluding earthworms). At least 50% of the variability in integrated richness and richness of each invertebrate group was explained by six or fewer predictors. The key predictors of soil invertebrate richness were light availability in the understory, the abundance of an epigeic earthworm species, the amount of phosphorus, nitrogen, and calcium in soil, soil acidity, and the diversity or mass of fungi, plant litter, and roots. The results are consistent with the hypothesis that resource abundance and diversity strongly regulate soil biodiversity, with increases in resources (up to a point) likely to increase the total diversity of soil invertebrates. However, the relationships between various resources and soil invertebrate diversity were taxon-specific. Similarly, diversity of all 10 invertebrate taxa was not high beneath any of the 14 tree species. Thus, changes to tree species composition and resource availability in temperate forests will likely increase the richness of some soil invertebrates while decreasing the richness of others.