Browsing by Author "Lowengrub, John"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Conservative multigrid methods for Cahn-Hilliard fluids(2002-09) Kim, Junseok; Kang, Kyungkeun; Lowengrub, JohnWe develop a conservative, second order accurate fully implicit discretization in two dimensions of the Navier-Stokes NS and Cahn-Hilliard CH system that has an associated discrete energy functional. This system provides a diffuse-interface description of binary fluid flows with compressible or incompressible flow components [44, 4]. In this work, we focus on the case of flows containing two immiscible, incompressible and density-matched components. The scheme, however, has a straightforward extension to multi-component systems. To efficiently solve the discrete system at the implicit time-level, we develop a nonlinear multigrid method to solve the CH equation which is then coupled to a projection method that is used to solve the NS equation. We analyze and prove convergence of the scheme in the absence of flow. We demonstrate convergence of our scheme numerically in both the presence and absence of flow and perform simulations of phase separation via spinodal decomposition. We examine the separate effects of surface tension and external flow on the decomposition. We find surface tension driven flow alone increases coalescence rates through the retraction of interfaces. When there is an external shear flow, the evolution of the flow is nontrivial and the flow morphology repeats itself in time as multiple pinchoff and reconnection events occur. Eventually, the periodic motion ceases and the system relaxes to a global equilibrium. The equilibria we observe appears has a similar structure in all cases although the dynamics of the evolution is quite different. We view the work presented in this paper as preparatory for the detailed investigation of liquid/liquid interfaces with surface tension where the interfaces separate two immiscible fluids [37]. To this end, we include a simulation of the pinchoff of a liquid thread under the Rayleigh instability at finite Reynolds number.Item Nonnecrotic tumor growth and the effect of vascularization. I. Linear analysis and self-similar evolution(2001-06) Cristini, Vittorio; Lowengrub, John; Nie, QingIn this paper, we revisit the linear analysis of the transient evolution of a perturbed tumor interface in two and three dimensions. In Part II, we will study the full nonlinear problem using boundary-integral simulations. The tumor core is nonnecrotic and no inhibitor chemical species are present. A new formulation is developed that demonstrates that tumor evolution is described by a reduced set of two parameters and is qualitatively unaffected by the number of spatial dimensions. One parameter is related to the rate of mitosis. The other describes the balance between vascularization and apoptosis (programmed cell-death). Three regimes of growth are identified with increasing degrees of vascularization: low (diffusion dominated), moderate and high vascularization. We demonstrate that parameter ranges exist for which the tumor evolves self-similarly (i.e., shape invariant) in the first two regimes. In the diffusion-dominated regime, vascularization is weak or absent and self-similar evolution leads to a nontrivial dormant state. In the second regime vascularization becomes significant with respect to apoptosis; self-similar growth is unbounded and is associated with critical conditions of vascularization. Away from these critical conditions, perturbations may either grow with respect to the unperturbed shape, and thus lead to invasive fingering into the external tissues and metastasization, or decay to zero. In the high-vascularization regime, we find that during unbounded growth the tumor shape always tends to the unperturbed shape and neither self-similar nor fingering evolution occur. This last result is in agreement with recent experimental observations of in vivo tumor growth and angiogenesis, and suggests that the metastatic growth of highly-vascularized tumors is associated to vascular and elastic anisotropies, which are not included in our model.