Browsing by Author "Lodge, Timothy P"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item 1D SAXS indexing macro for Igor Pro(2021-09-08) Lindsay, Aaron P; Mueller, Andreas J; Mahanthappa, Mahesh K; Lodge, Timothy P; Bates, Frank S; bates001@umn.edu; Bates, Frank S; UMN Polymer GroupThis code was developed for the facile analysis of 1D SAXS data collected from ordered materials in Igor Pro. A robust file loading algorithm is included, allowing for rapid generation of publication quality stack plots. Also included is a straightforward indexing macro, enabling indexing of 1D SAXS data to a variety of phases. New phases can be added with minimal effort and multiple indexing options are included (e.g., ticks, lines, color, etc.), minimizing time spent analyzing data and producing plots for presentations or publications.Item Data for Mechanism of Escape of a Single Chain from a Diblock Copolymer Micelle(2022-12-19) Seeger, Sarah C; Lodge, Timothy P; Dorfman, Kevin D; dorfman@umn.edu; Dorfman, Kevin D; Dorfman Research GroupSimulation input files and processed data appearing in the related manuscript.Item Data for Superlattice by charged block copolymer self-assembly(2019-04-09) Shim, Jimin; Bates, Frank S; Lodge, Timothy P; lodge@umn.edu; Lodge, Timothy P; Bates Research Group; Lodge Research GroupThese files contain data along with the associated output from instrumentation supporting all results reported in "Superlattice by charged block copolymer self-assembly" by Shim et. al. We report the discovery of an intriguing superlattice morphology from compositionally symmetric charged block copolymers, poly[(oligo(ethylene glycol) methyl ether methacrylate–co–oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]–b–polystyrene (POEGMA–PS). These materials are conveniently prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization, followed by introduction of charged groups, in a manner that allows for systematic variation of the molecular structure in general, and the charge content in particular. POEGMA–PS self-assembles into a superlattice lamellar morphology, a previously unknown class of diblock nanostructures, but strikingly similar to oxygen-deficient perovskite derivatives, when the fraction of charged groups in the POEGMA block is about 5–25%. The charge fraction in the POEGMA block, and the tethering of the ionic groups, both play critical roles in driving the formation of the superlattice. This study highlights the accessibility of novel morphologies by introducing charges in a controlled manner.Item Role of chain length in the formation of Frank-Kasper phases in diblock copolymers(2018) Lewis III, Ronald M; Arora, Akash; Beech, Haley K; Lee, Bongjoon; Lindsay, Aaron P; Lodge, Timothy P; Dorfman, Kevin D; Bates, Frank SItem Supporting Data for "Block Copolymer Molecular Design to Address Practical Limitations to Recycling Polyolefin Blends"(2025-05-12) Cui, Shuquan; Jeong, Daun; Shi, Yukai; Jahan, Nusrat; Lodge, Timothy P; Bates, Frank S; Ellison, Christopher J; cellison@umn.edu; Ellison, Christopher J; Department of Chemical Engineering and Materials SciencePlastics offer innumerable societal benefits but simultaneously contribute to persistent environmental pollution, dominated by polyethylene (PE) and isotactic polypropylene (iPP). Melt blending and reformulating post-consumer PE and iPP into useful materials presents a promising recycling approach. However, such repurposed plastics are generally mechanically inferior due to an inability to efficiently separate polyolefins in mixed waste streams; phase separation of PE and iPP results in brittleness as a consequence of poor interfacial strength. Recently we demonstrated that a small amount (1 wt%) of a poly(ethylene)-block-poly(ethyl ethylene-ran-ethylene)-block-poly(ethylene) (EXE) triblock copolymer, synthesized by low-cost anionic polymerization of 1,3-butadiene followed by solution hydrogenation, restores tensile toughness to levels equivalent to virgin polyolefins. Unfortunately, low-temperature solvent insolubility of EXE, driven by crystallization of the E blocks containing 1.5 ethyl branches per 100 backbone repeat units (EB), presents a challenge for industrial hydrogenation. Comparable toughness (ca. > 400% strain at break) was achieved in the present work with EB ranging from 1.5 to 6.5, accompanied by reduced EXE crystallinity and dissolution in cyclohexane down to room temperature at the highest EB content. This remarkable toughening behavior is attributed to a synergy between chain entanglements between the E end blocks and semicrystalline PE homopolymer and formation of E block “crystal nodules” that prevent chain pullout, along with topological constraints between the X loops and semicrystalline iPP. Our findings overcome barriers to commercial production of EXE with existing industrial facilities, providing a cost-effective strategy for recycling PE and iPP.Item Supporting Data for "Development of a PointNet for Detecting Morphologies of Self-Assembled Block Oligomers in Atomistic Simulations"(2021-08-30) Shen, Zhengyuan; Sun, Yangzesheng; Lodge, Timothy P; Siepmann, J Ilja; siepmann@umn.edu; Siepmann, J Ilja; University of Minnesota MRSECMolecular simulations with atomistic or coarse-grained force fields are a powerful approach for understanding and predicting the self-assembly phase behavior of complex molecules. Amphiphiles, block oligomers, and block polymers can form mesophases with different ordered morphologies describing the spatial distribution of the blocks, but entirely amorphous nature for local packing and chain conformation. Screening block oligomer chemistry and architecture through molecular simulations to find promising candidates for functional materials is aided by effective and straightforward morphology identification techniques. Capturing 3-dimensional periodic structures, such as ordered network morphologies, is hampered by the requirement that the number of molecules in the simulated system and the shape of the periodic simulation box need to be commensurate with those of the resulting network phase. Common strategies for structure identification include structure factors and order parameters, but these fail to identify imperfect structures in simulations with incorrect system sizes. Building upon pioneering work by DeFever et al. [Chem. Sci.2019, 10, 7503–7515] who implemented a PointNet (i.e., a neural network designed for computer vision applications using point clouds) to detect local structure in simulations of single-bead particles and water molecules, we present a PointNet for detection of nonlocal ordered morphologies of complex block oligomers. Our PointNet was trained using atomic coordinates from molecular dynamics simulation trajectories and synthetic point clouds for ordered network morphologies that were absent from previous simulations. In contrast to prior work on simple molecules, we observe that large point clouds with 1000 or more points are needed for the more complex block oligomers. The trained PointNet model achieves an accuracy as high as 0.99 for globally ordered morphologies formed by linear diblock, linear triblock, and 3-arm and 4-arm star-block oligomers, and it also allows for the discovery of emerging ordered patterns from nonequilibrium systems.Item Supporting Data for "Effects of Electrolytes on Thermodynamics and Structure of Oligo(ethylene oxide)/Salt Solutions and Liquid–Liquid Equilibria of a Squalane/Tetraethylene Glycol Dimethyl Ether Blend"(2021-01-22) Shen, Zhengyuan; Chen, Qile P; Lodge, Timothy P; Siepmann, J Ilja; siepmann@umn.edu; Siepmann, J IljaData including input/output and restart files for all the systems, analysis codes (python, fortran, cpp), and figures in the paper "Effects of Electrolytes on Thermodynamics and Structure of Oligo(ethylene oxide)/Salt Solutions and Liquid–Liquid Equilibria of a Squalane/Tetraethylene Glycol Dimethyl Ether Blend". Sample movie files of the production trajectory are provided.Item Supporting Data for "From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains"(2020-07-06) Shen, Zhengyuan; Chen, Jingyi L; Vernadskaia, Viktoriia; Ertem, S Piril; Mahanthappa, Mahesh K; Hillmyer, Marc A; Reineke, Theresa M; Lodge, Timothy P; Siepmann, J Ilja; siepmann@umn.edu; Siepmann, J Ilja; Materials Research Science & Engineering Center (MRSEC)Data including input/output and restart files for all the systems, analysis codes (python, fortran, cpp), and figures in the paper "From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains." Sample molecular dynamics trajectories pieces are provided due to the extremely long simulation trajectories.Item Supporting data for Core−Shell Gyroid in ABC Bottlebrush Block Terpolymers(2023-05-25) Cui, Shuquan; Zhang, Bo; Shen, Liyang; Bates, Frank S; Lodge, Timothy P; lodge@umn.edu; Lodge, Timothy P; University of Minnesota Department of ChemistryThese files contain primary data supporting all results reported in Cui et al. "Core−shell gyroid in ABC bottlebrush block terpolymers." A series of bottlebrush block polymers containing 24 PEP-PS diblock copolymers and 109 PEP-PS-PEO triblock terpolymers were synthesized by ring-opening metathesis polymerization (ROMP) of norbornene-functionalized poly(ethylene-alt-propylene) (PEP), poly(styrene) (PS), and poly(ethylene oxide) (PEO) macromonomers. The molecular weights of the three macromonomers were around 1 kg/mol. The relatively modest total backbone degrees of polymerization ranged from ca. 20 to 40. Morphologies of these bottlebrush block polymers were characterized by small-angle X-ray scattering (SAXS). The PEP-PS diblocks exhibited only cylindrical (HEX) and lamellar (LAM) morphologies; the desired network phases did not appear in these materials, consistent with previous experimental studies. However, adding variable-length bottlebrush PEO blocks to diblocks containing 30% to 50% PS led to a substantial core-shell double gyroid (GYR) phase window in the ternary phase portrait. Encouragingly, the GYR unit cell dimensions increased almost linearly with the backbone degree of polymerization, portending the ability to access larger network dimensions than previously obtained with linear block polymers. This finding demonstrates a periodic network phase in bottlebrush block polymers for the first time and highlights extraordinary opportunities associated with applying facile ROMP chemistry to multiblock bottlebrush polymers.Item Supporting Data for Cylinders-in-Undulating-Lamellae Morphology from ABC Bottlebrush Block Terpolymers(2025-01-06) Cui, Shuquan; Murphy, Elizabeth A; Zhang, Wei; Zografos, Aristotelis; Shen, Liyang; Bates, Frank S; Lodge, Timothy P; lodge@umn.edu; Lodge, Timothy P; University of Minnesota Department of ChemistryBlock polymer self-assembly affords a versatile bottom-up strategy to develop materials with desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes. The absence of complex morphologies such as networks might originate from the intrinsically stiff backbone architecture. We experimentally investigated the morphologies of non-frustrated ABC bottlebrush block terpolymers, based on two chemistries, poly(ethylene-alt-propylene)-b-polystyrene-b-poly(DL-lactic acid) (PEP-PS-PLA) and PEP-b-PS-b-poly(ethylene oxide) (PEP-PS-PEO) synthesized by ring-opening metathesis polymerization of norbornene-terminated macromonomers. Structural characterization based on small-angle X-ray scattering and transmission electron microscopy measurements revealed an unprecedented cylinders-in-undulating-lamellae (CUL) morphology with p2 symmetry, for both systems. Additionally, automated liquid chromatography was employed to fractionate the PEP-PS-PLA bottlebrush polymer, leading to fractions with a spectrum of morphologies, including the CUL. These findings underscore the significance of macromolecular dispersity in nominally narrow dispersity bottlebrush polymers, while demonstrating the power of this fractionation technique.Item Supporting Data for Internal Structure of Methylcellulose Fibrils(2020-08-26) Schmidt, Peter W; Morozova, Svetlana; Ertem, S. Piril; Coughlin, McKenzie L; Davidovich, Irina; Talmon, Yeshayahu; Reineke, Theresa M; Bates, Frank S; Lodge, Timothy P; lodge@umn.edu; Lodge, Timothy P; Materials Research Science & Engineering Center (MRSEC)Data files used to generate all figures in the manuscript "Internal Structure of Methylcellulose Fibrils" and its supplementary information.Item Supporting Data for Mesoscopic Morphologies in Frustrated ABC Bottlebrush Block Terpolymers(2025-02-03) Cui, Shuquan; Murphy, Elizabeth A; Santra, Subrata; Bates, Frank S; Lodge, Timothy P; lodge@umn.edu; Lodge, Timothy P; University of Minnesota Department of ChemistryBottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals. However, the structures observed in AB diblock bottlebrushes are generally limited to simple lamellae and cylindrical phases, which restricts their use in many applications. In this study, we synthesized a large library of 50 ABC bottlebrush triblock terpolymers, poly(DL-lactide)-b-poly(ethylene-alt-propylene)-b-polystyrene (PLA-PEP-PS), spanning a wide range of compositions using ring-opening metathesis polymerization (ROMP) of norbornene-functionalized macromonomers. This constitutes a frustrated system, in that the mandatory internal interfaces (PLA/PEP) have larger interfacial energies than PLA/PS. We systematically explored phase behavior using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Morphological characterization revealed a series of intriguing mesoscopic structures, including layered microstructures, core-shell hexagonally packed cylinders (CSHEX, plane group p6mm), alternating tetragonally packed cylinders (ATET, plane group p4mm), and an unprecedented morphology, rectangular centered cylinders-in-undulating-lamellae (RCCUL, plane group c2mm). Adjustments in molecular weight resulted in a wide range of unit cell dimensions (exemplified by RCCUL), from 40 nm to over 130 nm. This work demonstrates that multiblock bottlebrushes offer promising opportunities for developing materials with novel diverse structures and a broad range of domain dimensions.Item Supporting Data for Salt-Dependent Structure in Methylcellulose Fibrillar Gels(2022-06-09) Liberman, Lucy; Schmidt, Peter W; Coughlin, McKenzie L; Matatyaho Ya'akobi, Asia; Davidovich, Irina; Edmund, Jerrick; Ertem, Sedef P; Morozova, Svetlana; Talmon, Yeshayahu; Bates, Frank S; Lodge, Timothy P; lodge@umn.edu; Lodge, Timothy P; Materials Research Science & Engineering Center (MRSEC)Data files used to generate all figures in the manuscript "Salt-Dependent Structure in Methylcellulose Fibrillar Gels" and its supplementary information.Item Supporting Data for Self-Assembly of Unusually Stable Thermotropic Network Phases by Cellobiose-Based Guerbet Glycolipids(2024-04-08) Das, Soumi; Zheng, Caini; Calabrese, Michelle A; Reineke, Theresa M; Siepmann, Ilja J; Mahanthappa, Mahesh K; Lodge, Timothy P; treineke@umn.edu; Reineke, Theresa M; University of MinnesotaThese files contain data along with associated output from instrumentation supporting all results reported in the referenced paper. Bicontinuous thermotropic liquid crystal (LC) materials, such as double gyroid (DG) phases, are highly promising for various applications due to their intricate 3D network structures. However, the lack of robust molecular design rules for shape-filling amphiphiles hinders their utility. To address this, we synthesized cellobiose-based glycolipids with Guerbet-type branched alkyl tails and examined their thermotropic LC self-assembly. Through techniques including differential scanning calorimetry (DSC), polarized optical microscopy (POM), and small-angle X-ray scattering (SAXS), we found that Guerbet cellobiosides have a strong propensity to form DG morphology across broad thermotropic phase ranges. The stability of these assemblies depends on the alkyl tail structure and anomeric configuration of the glycolipid in a previously unrecognized manner. Molecular simulations provide further insights, revealing molecular motifs crucial for network phase self-assembly, paving the way for future designs and applications of network LC materials.Item Wigner-Seitz Cell generation and calculations in MATLAB(2021-09-08) Lindsay, Aaron P; Mueller, Andreas J; Mahanthappa, Mahesh K; Lodge, Timothy P; Bates, Frank S; bates001@umn.edu; Bates, Frank S; UMN Polymer GroupThis series of MATLAB codes was developed to generate publication-quality Wigner-Seitz cells for a variety of structures. These are frequently desired for self-assembled micellar systems, wherein the geometry of the Wigner-Seitz cell plays a role in the emergence of several packings. The main algorithm (VoronoiTesselation.m) is generalized, allowing specification of lattice positions and parameters or the upload of these values from a .xtl file exported from Vesta. Added is the ability to determine various cell parameters, including the coordination number, area/volume, and the second-moment volume, which is proportional to the stretching moment for polymer chains stretched from the cell center to the cell edges. A simple algorithm for simulation of 2D diffraction patterns is also included (diffraction.m).