Browsing by Author "Lin, Ying"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Catalytic Partial Oxidation in Novel Non-Premixed Counter-Flow Reactor Configurations(2020-09) Lin, YingCatalytic partial oxidation (CPOx) is established processes for generating synthesis gas (i.e. the mixtures of hydrogen and carbon oxides). It is used to convert heavier hydrocarbon fuels into lighter ones or synthesis gas for a variety of applications. CPOx systems usually incorporate metal catalysts, such as nickel, platinum, rhodium, etc., impregnated on wash-coated porous media to enhance surface reaction rates. The rapid reforming kinetics and expedient light-off characteristics of CPOx make it suitable not only for large-scale industrial applications, but also for on-board vehicle reforming and other portable applications where compactness and simplicity are advantageous. There are different CPOx schemes for desired reforming reactions, including plug-flow reactors, wire gauge reactors, and flash volatilization techniques. Most CPOx reactors reported in the literature implement premixed schemes that mix fuel, oxidizer (usually oxygen), and other species (such as steam) prior reaching the catalyst inlet. Such implementations enjoy benefits of simple structures and flow patterns. However, disadvantages of premixed reformers are also exist including autoignition caused by preheating the mixture before reactions and catalyst deactivation through surface carbon formation and coking. To overcome the disadvantages of premixed CPOx, novel, non-premixed reactor type has been conceived and studied in this body of work. The reactor design is inspired by the canonical counter-flow burner commonly used in flame studies but has a catalyst-coated metal mesh located between the air and fuel inlets. The counter-flow CPOx reactor has unique temperature gradients and residence times that tend to reduce coking by avoiding thermal and mixture conditions where carbon is formed. This counter-flow configuration has the potential in both fundamental studies like investigating reforming kinetics and practical applications like enabling advanced combustion modes in internal combustion engines.