Browsing by Author "Kangas, Kevin W"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Opportunities Offered by Emerging Hydrometallurgical Technologies(University of Minnesota Duluth, 2022-08) Rao, Shashi; Mlinar, Matthew A; Hudak, George J; Kangas, Kevin W; Peterson, Dean MMinnesota has abundant mineral resources, including deposits of iron, iron manganese, copper-nickel- cobalt-platinum group elements, titanium-vanadium, copper-zinc, gold with and without silver, sand, and aggregate. Commercial and industrial byproducts such as mine tailings, industrial residues, and waste electrical and electronic equipment also contain valuable mineral resources. To address significant environmental impact concerns associated with mining, collection and processing of these materials, new processing technology approaches with reduced water and energy consumption and minimal environmental footprints are needed to support production of value-added products. Emerging hydrometallurgical processing technologies offer promising opportunities. Hydrometallurgy techniques have a range of applications from extraction of high-value products from mineral and recycled materials to water remediation to generating secondary products for carbon sequestration. To evaluate the technical, economic, and environmental resiliency of emerging hydrometallurgical innovations, the Minnesota Legislative-Citizen’s Commission on Minnesota Resources (LCCMR) provided funding to the Natural Resources Research Institute (NRRI) to evaluate how to best support the development of emerging hydrometallurgical technologies in the state. To support this effort, NRRI evaluated: 1) A summary of perceived current and future hydrometallurgical needs of stakeholders based on a “voice of customer” (VOC) survey. 2) A discussion of how to apply hydrometallurgical capabilities to Minnesota-specific mineral and waste resources to maximize long-term economic, environmental, and social benefits and resilience. 3) A vision developed to advance Minnesota’s research capabilities in mineral characterization, mineral processing, extraction, and refining via hydrometallurgy that will lead to more efficient and effective utilization of Minnesota minerals and waste resources in the future. This research digs deeper into emerging applications of hydrometallurgical techniques in the production of value-added materials from a range of primary and secondary resources. The report also explores how application of these techniques to regional resources could potentially foster a more diversified minerals economy in Minnesota, develop treatment technologies to protect water resources, utilize regional resources for carbon mineralization, and supply materials required to build clean energy technologies.Item Test Sample Production Report Torrefaction of Ponderosa Pine Chips(University of Minnesota Duluth, 2019-03) Hagen, Timothy S; Young, Matthew; Mack, Paul; Grochowski, Jack; Kangas, Kevin W; Fosnacht, Donald ROregon Torrefaction, LLC (OTL) and the US Endowment for Forestry and Communities has formed Restoration Fuels, LLC (RF) to construct and operate a 12 ton/h kiln torrefier which targets approximately 100,000 tons of torrefied woody biomass production annually. The plant will be colocated at the Malheur Lumber Mill, located in John Day, Oregon. Biomass sourcing will be principally small diameter, low-value wood from surrounding or nearby national forests including the Malheur and the Ochoco National Forests. The bulk of the woody biomass will be Ponderosa Pine from the dry land forests that surround John Day. Biomass coming from national forest areas have been evaluated for compliance with the US National Environmental Policy Act (NEPA) and are termed “shelf ready” for treatment. Restoration Fuels is now in the process of acquiring biomass supply to feed the torrefier. Early discussions with potential domestic and off-shore customers points to the need to have torrefied, densified test samples available for their evaluation, and it is in OTL’s interest on behalf of RF to produce a test batch of torrefied biomass that would be representative of RF’s future fuel product and to make samples available to serve customer interests. The effort is funded by the US Endowment and US Forest Service. To accomplish the test sample production, the OTL provided 32.8 tons of wood chips to the Biomass Conversion Lab (BCL) located in Coleraine, MN for a sustained torrefaction production run using ponderosa pine as feedstock. The targeted specification for the torrefied wood chips as requested by OTL was 9,500 btu/lb. The BCL successfully torrefied and provided over 14 tons of torrefied feed stock to the OTL that met this targeted specification.