Browsing by Author "Janke, Benjamin D."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Detecting phosphorus release from stormwater ponds to guide management and design(2021-01) Janke, Benjamin D.; Natarajan, Poornima; Shrestha, Paliza; Taguchi, Vinicius T.; Finlay, Jacques C.; Gulliver, John S.Item Permeable Pavement for Road Salt Reduction(Minnesota Department of Transportation, 2020-06) Erickson, Andrew J.; Gulliver, John S.; Herb, William R.; Janke, Benjamin D.; Nguyen, Nam K.Road salt and particularly sodium chloride is used for de-icing roadways during winter months in cold climates but can have a negative impact on the environment. This report describes research that investigated the use of permeable pavements that are not treated with road salt as an alternative to impermeable pavement surfaces that are treated with road salt. Various methods were used to quantify the snow and ice cover on impermeable and permeable pavements under near-identical but various environmental conditions. It must be noted, however, that impermeable pavements including the ones in this study are typically managed with road salt while permeable pavements are not. However, the following conclusions can be drawn from previous research and data collected during this project: 1) permeable pavements and the porous subbase beneath them function as thermal insulators, preventing heat transfer from the surface to below and vice versa; 2) permeable pavements that are clogged due to sediment accumulation or collapsed pores provide no benefit compared to impermeable pavement; 3) more sites with impermeable pavement had more friction than sites with permeable pavement; 4) more sites with impermeable pavement had less snow and/or ice cover than sites with permeable pavements; and 5) more sites with impermeable pavement had pooled water than sites with permeable pavements. This demonstrates the primary winter benefit of permeable pavements: meltwater can infiltrate through permeable pavements and prevent refreezing. Refreezing of meltwater on impermeable pavements creates dangerously slippery conditions which can be avoided with functional permeable pavements.Item Stormwater Pond Maintenance, and Wetland Management for Phosphorous Retention(Minnesota Department of Transportation, 2023-06) Janke, Benjamin D.; Natarajan, Poornima; Gulliver, John S.; Finlay, Jacques C.Reduction in phosphorus is critical because phosphate, a dissolved form of phosphorus, sustains algal and cyanobacteria growth and causes a wide range of water-quality impairments in the ponds and downstream waters including algal blooms, excess floating plants, taste, and odor problems. Many stormwater ponds and wetlands that treat stormwater appear to be less effective than expected or originally intended in phosphorus retention, a key function of these ponds in urban environments. There is evidence that many old ponds are releasing phosphorus from bottom sediments at high rates and likely exporting phosphorus to downstream surface water bodies. A major outcome of this project is a pond Assessment Tool to assess the risk of high phosphorus concentrations in ponds and sediment release of phosphorus. The tool is based on 20 ponds with detailed water quality and phosphorus release measurements and a meta-analysis of 230 ponds in the Twin Cities metro area. Other outcomes included a working definition of a constructed stormwater pond and a wetland treating stormwater in the framework of water-body regulations, the development of recommendations for stormwater pond maintenance and wetland management, and an update to the sections on the constructed stormwater ponds section of the 2009 Stormwater Maintenance BMP Guide.Item Stormwater Pond Maintenance, and Wetland Management for Phosphorus Retention(Minnesota Department of Transportation, 2023-06) Janke, Benjamin D.; Natarajan, Poornima; Gulliver, John S.; Finlay, Jacques C.Reduction in phosphorus is critical because phosphate, a dissolved form of phosphorus, sustains algal and cyanobacteria growth and causes a wide range of water-quality impairments in the ponds and downstream waters including algal blooms, excess floating plants, taste, and odor problems. Many stormwater ponds and wetlands that treat stormwater appear to be less effective than expected or originally intended in phosphorus retention, a key function of these ponds in urban environments. There is evidence that many old ponds are releasing phosphorus from bottom sediments at high rates and likely exporting phosphorus to downstream surface water bodies. A major outcome of this project is a pond Assessment Tool to assess the risk of high phosphorus concentrations in ponds and sediment release of phosphorus. The tool is based on 20 ponds with detailed water quality and phosphorus release measurements and a meta-analysis of 230 ponds in the Twin Cities metro area. Other outcomes included a working definition of a constructed stormwater pond and a wetland treating stormwater in the framework of water-body regulations, the development of recommendations for stormwater pond maintenance and wetland management, and an update to the sections on the constructed stormwater ponds section of the 2009 Stormwater Maintenance BMP Guide.Item Wet Pond Maintenance for Phosphorus Retention(Minnesota Department of Transportation, 2022-06) Taguchi, Vinicius J.; Janke, Benjamin D.; Herb, William R.; Gulliver, John S.; Finlay, Jacques C.; Natarajan, PoornimaThis report considers the outcomes of the pond maintenance strategies of sediment treatment to reduce internal loading of phosphorus, mechanical aeration, alteration of pond outlet to pull water off the bottom, reduction of wind sheltering, dredging, outlet treatment by iron enhanced sand filtration and reduction of phosphorus loading from the watershed. The strategies were analyzed with the model CE-QUAL-2E, where inputs to the model were initial conditions, morphology, inflow rate and total phosphorus and soluble reactive phosphorus concentrations, sediment oxygen demand, sediment release of phosphate, and meteorological conditions. The model as applied in this research simulates stratification, wind mixing, outflow and vertical profiles of temperature, dissolved oxygen, chloride, soluble reactive phosphorus, and total phosphorus. The model is calibrated on data from Alameda pond, verified on data from the Shoreview Commons pond, and applied to maintenance and remediation strategies for the Alameda, Shoreview Commons, Langton, and Minnetonka 849W ponds. Costs of maintenance or remediation strategies are estimated and the cost per reduction in total phosphorus release is calculated.Item Wet Pond Maintenance for Phosphorus Retention: LRRB 2019 KB 03 MnDOT Agreement No. 1034035(2022-06) Taguchi, Vinicius J.; Janke, Benjamin D.; Herb, William R.; Gulliver, John S.; Finlay, Jacques C.; Natarajan, Poornima