Browsing by Author "Hussain, Shah"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Development and Demonstration of a Cost-Effective In-Vehicle Lane Departure and Advanced Curve Speed Warning System(Minnesota Department of Transportation, 2018-12) Faizan, Muhammad; Hussain, Shah; Hayee, M. I.A Lane-Departure Warning System (LDWS) and Advance Curve -Warning System (ACWS) are critical among several Advanced Driver- Assistance Systems (ADAS) functions, having significant potential to reduce crashes. Generally, LDWS us e different image processing or optical s canning techniques to detect a lane departure. Such LDWS have some limitations such as harsh weather or irregular la ne markings can influence their performance. Other LDWS use a GPS receiver with access to digital maps with lane-level resolution to improve the system's efficiency but make the overall system more complex and expensive. In this report, a lane-departure detection method is proposed, which uses a standard GPS receiver to determine the lateral shift of a vehicle by comparing a vehicle’s trajectory to a reference road direction without the need of any digital maps with lane-level resolution. This method only needs road-level information from a standard digital mapping database. Furthermore, the system estimates the road curvature and provides advisory speed for a given curve simultaneously. The field test results show that the proposed system can detect a true lane departure with an accuracy of almost 100%. Although no true lane departure was left undetected, occasional false lane departures were detected about 10% of the time when the vehicle did not actually depart its lane. Furthermore, system always issues the curve warning with an advisory speed at a safe distance well ahead of time.Item Development and Demonstration of Merge Assist System using Connected Vehicle Technology(Center for Transportation Studies, University of Minnesota, 2019-04) Hussain, Shah; Peng, Zhiyuan; Hayee, M. ImranOne potential area to improve driver safety and traffic mobility is around merge points of two roadways, e.g., at a typical freeway entrance ramp. Due to poor visibility because of weather or complex road infrastructure, on many such entrance ramps, it may become difficult for the driver on the merging/entrance ramp to clearly see the vehicles travelling on the main freeway, making it difficult to merge. A fundamental requirement to facilitate many advance driver assistance systems (ADAS) functions including a merge assist system is to accurately acquire vehicle positioning information. Accurate position information can be obtained using either sensor-based systems (camera-based, radar, lidar) or global navigation satellite systems (GPS, DGPS, RTK). For these systems to work well for practical road and weather conditions, advanced techniques and algorithms are needed, which make the system complex and expensive to implement. In this research project, we propose a merge assist system by acquiring the relative positioning of vehicles using standard GPS receivers and dedicated short-range communication (DSRC) based vehicle-to-vehicle (V2V) communication. The DSRC-equipped vehicles travelling on the main freeway and on the entrance-ramp will periodically communicate their positioning information with each other. Using that information, the relative trajectories, relative lane, and position of all DSRC-equipped vehicles travelling on the main freeway will be calculated and recorded in real time in the vehicle travelling on the entrance ramp. Finally, a merge-time cushion will also be calculated, which could potentially be used to assist the driver of the ramp vehicle to safely merge into the freeway.Item Merge Assist System Using GPS and DSRC Based Vehicle-to-Vehicle Communication(2019-01) Hussain, ShahOne potential area to improve driver safety and traffic mobility is around merge points of two roadways e.g., at a typical freeway entrance ramp. Due to poor visibility because of weather or complex road infrastructure, on many such entrance ramps, it may become difficult for the driver on the merging/entrance ramp to clearly see the vehicles travelling on the main freeway, making it difficult to merge. A fundamental requirement to facilitate many ADAS functions including a merge assist system is to accurately acquire vehicle positioning information. Accurate position information can be obtained using either sensor-based systems (camera-based, RADAR, LiDAR) or Global Navigation Satellite Systems (GPS, DGPS, RTK). For these systems to work well for practical road and weather conditions, advanced techniques and algorithms are needed which make the system complex and expensive to implement. In this report, the author proposes a merge assist system by acquiring the relative positioning of vehicles using standard GPS receivers and DSRC based V2V communication. The DSRC equipped vehicles travelling on the main freeway and on the entrance-ramp will periodically communicate their positioning information with each other. Using that information, the relative trajectories, relative lane and position of all DSRC equipped vehicles travelling on the main freeway, will be calculated and recorded in real time in the vehicle travelling on the entrance ramp. Finally, a merge time cushion will also be calculated which could potentially be used to assist the driver of the ramp vehicle to safely merge into the freeway.