Browsing by Author "Guo, Shuang-Zhuang"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Supporting data for "3D Printed Functional and Biological Materials on Moving Freeform Surfaces"(2020-05-13) Zhu, Zhijie; Guo, Shuang-Zhuang; Hirdler, Tessa; Eide, Cindy; Fan, Xiaoxiao; Tolar, Jakub; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research Group; Tolar LaboratoryThe data set includes the experimental data supporting the results reported in Zhu, Zhijie, Shuang‐Zhuang Guo, Tessa Hirdler, Cindy Eide, Xiaoxiao Fan, Jakub Tolar, and Michael C. McAlpine. "3D printed functional and biological materials on moving freeform surfaces." Advanced Materials, 30(23), 1707495. Conventional 3D printing technologies typically rely on open‐loop, calibrate‐then‐print operation procedures. An alternative approach is adaptive 3D printing, which is a closed‐loop method that combines real‐time feedback control and direct ink writing of functional materials in order to fabricate devices on moving freeform surfaces. Here, it is demonstrated that the changes of states in the 3D printing workspace in terms of the geometries and motions of target surfaces can be perceived by an integrated robotic system aided by computer vision. A hybrid fabrication procedure combining 3D printing of electrical connects with automatic pick‐and‐placing of surface‐mounted electronic components yields functional electronic devices on a free‐moving human hand. Using this same approach, cell‐laden hydrogels are also printed on live mice, creating a model for future studies of wound‐healing diseases. This adaptive 3D printing method may lead to new forms of smart manufacturing technologies for directly printed wearable devices on the body and for advanced medical treatments.Item Supporting data for "3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors"(2020-05-22) Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M; Saltzman, Daniel A; Konety, Badrinath R; Sweet, Robert M; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research GroupThe data set includes the experimental data and the corresponding MRI stereolithography (STL) file supporting the results reported in Kaiyan Qiu; Zichen Zhao; Ghazaleh Haghiashtiani; Shuang-Zhuang Guo; Mingyu He; Ruitao Su; Zhijie Zhu; Didarul B. Bhuiyan; Paari Murugan; Fanben Meng; Sung Hyun Park; Chih-Chang Chu; Brenda M. Ogle; Daniel A. Saltzman; Badrinath R. Konety; Robert M. Sweet; Michael C. McAlpine. 3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors. Adv. Mater. Technol. 2018, 3, 1700235. The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-like tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.Item Supporting data for "3D Printed Polymer Photodetectors"(2020-05-29) Park, Sung Hyun; Su, Ruitao; Guo, Shuang-Zhuang; Qiu, Kaiyan; Joung, Daeha; Fanben, Meng; McAlpine, Michael C; Jeong, Jaewoo; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research GroupExtrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light-emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer-based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one-pot custom built 3D-printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light-emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D-printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next-generation wearable and 3D-structured optoelectronics, and validating the potential of 3D printing to achieve high-performance integrated active electronic materials and devices.Item Supporting data for 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds(2020-05-15) Joung, Daeha; Truong, Vincent; Neitzke, Colin C; Guo, Shuang-Zhuang; Walsh, Patrick J; Monat, Joseph R; Meng, Fanben; Park, Sung Hyun; Dutton, James R; Parr, Ann M; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research GroupA bioengineered spinal cord is fabricated via extrusion-based multilateral 3D bioprinting, in which clusters of induced pluripotent stem cell (iPSC)-derived spinal neuronal progenitor cells (sNPCs) and oligodendrocyte progenitor cells (OPCs) are placed in precise positions within 3D printed biocompatible scaffolds during assembly. The location of a cluster of cells, of a single type or multiple types, is controlled using a point-dispensing printing method with a 200 μm center-to-center spacing within 150 μm wide channels. The bioprinted sNPCs differentiate and extend axons throughout microscale scaffold channels, and the activity of these neuronal networks is confirmed by physiological spontaneous calcium flux studies. Successful bioprinting of OPCs in combination with sNPCs demonstrates a multicellular neural tissue engineering approach, where the ability to direct the patterning and combination of transplanted neuronal and glial cells can be beneficial in rebuilding functional axonal connections across areas of central nervous system (CNS) tissue damage. This platform can be used to prepare novel biomimetic, hydrogel-based scaffolds modeling complex CNS tissue architecture in vitro and harnessed to develop new clinical approaches to treat neurological diseases, including spinal cord injury.