Browsing by Author "Dave, Eshan"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Investigation of Low Temperature Cracking in Asphalt Pavements National Pooled Fund Study 776(Minnesota Department of Transportation, 2007-10) Marasteanu, Mihai; Zofka, Adam; Turos, Mugur; Li, Xinjun; Velasquez, Raul; Li, Xue; Buttlar, William; Paulino, Glaucio; Braham, Andrew; Dave, Eshan; Ojo, Joshua; Bahia, Hussain; Williams, Christopher; Bausano, Jason; Gallistel, Allen; McGraw, JimGood fracture properties are an essential requirement for asphalt pavements built in the northern part of the US and in Canada for which the predominant failure mode is cracking due to high thermal stresses that develop at low temperatures. Currently, there is no agreement with respect to what experimental methods and analyses approaches to use to investigate the fracture resistance of asphalt materials and the fracture performance of asphalt pavements. This report presents a comprehensive research effort in which both traditional and new experimental protocols and analyses were applied to a statistically designed set of laboratory prepared specimens and to field samples from pavements with well documented performance to determine the best combination of experimental work and analyses to improve the low temperature fracture resistance of asphalt pavements. The two sets of materials were evaluated using current testing protocols, such as creep and strength for asphalt binders and mixtures as well as newly developed testing protocols, such as the disk compact tension test, single edge notched beam test, and semi circular bend test. Dilatometric measurements were performed on both asphalt binders and mixtures to determine the coefficient of thermal contraction. Discrete fracture and damage tools were utilized to model crack initiation and propagation in pavement systems using the finite element method and TCMODEL was used with the experimental data from the field samples to predict performance and compare it to the field performance data.Item Investigation of Low Temperature Cracking in Asphalt Pavements National Pooled Fund Study – Phase II(Minnesota Department of Transportation, 2012-08) Marasteanu, Mihai; Buttlar, William; Bahia, Hussain; Williams, Christopher; Moon, Ki Hoon; Teshale, Eyoab Zegey; Falchetto, Augusto Cannone; Turos, Mugurel; Dave, Eshan; Paulino, Glaucio; Ahmed, Sarfraz; Leon, Sofie; Braham, Andrew; Behnia, Behzad; Tabatabaee, Hassan; Velasquez, Raul; Arshadi, Amir; Puchalski, Sebastian; Mangiafico, Salvatore; Buss, Ashley; Bausano, Jason; Kvasnak, AndreaThe work detailed in this report represents a continuation of the research performed in phase one of this national pooled fund study. A number of significant contributions were made in phase two of this comprehensive research effort. Two fracture testing methods are proposed and specifications are developed for selecting mixtures based on fracture energy criteria. A draft SCB specification, that received approval by the ETG and has been taken to AASHTO committee of materials, is included in the report. In addition, alternative methods are proposed to obtain mixture creep compliance needed to calculate thermal stresses. Dilatometric measurements performed on asphalt mixtures are used to more accurately predict thermal stresses, and physical hardening effects are evaluated and an improved model is proposed to take these effects into account. In addition, two methods for obtaining asphalt binder fracture properties are summarized and discussed. A new thermal cracking model, called "ILLI-TC," is developed and validated. This model represents a significant step forward in accurately quantifying the cracking mechanism in pavements, compared to the existing TCMODEL. A comprehensive evaluation of the cyclic behavior of asphalt mixtures is presented, that may hold the key to developing cracking resistant mixtures under multiple cycles of temperature.Item Laboratory Performance Test for Asphalt Concrete(Center for Transportation Studies University of Minnesota, 2015-06) Dave, EshanThe asphalt mixture design and acceptance procedures for Minnesota Department of Transportation are currently governed primarily by the mixture composition requirements put forth through use of various volumetric measures (such as, air content, asphalt film thickness, aggregate gradation etc.). The asphalt binder has been required to meet performance criteria through the Superpave asphalt binder specifications. This study looked at use of laboratory performance test for asphalt mixtures. The study was conducted in three phases, first phase focused on merging the asphalt mix design records with the pavement performance data to determine effects of mix design parameters on asphalt pavement cracking performance. Second and third phase used a series of field sections across Minnesota to conduct field performance evaluations as well as laboratory tests on field cored samples. The testing for second and third phase of the study focused on using disk-shaped compact tension (DCT) fracture energy test as a laboratory performance test. The findings form he first phase of study indicated that the asphalt binder type as defined by the Superpave performance grade (PG) plays an important role in affecting the field cracking performance, majority of mixture design parameters did not indicate a consistent effect on field cracking performance, this reinforces the need for use of laboratory performance test as a mixture design tool as well as acceptance parameter. The DCT testing results showed trends consistent with previous and other on-going research studies, whereby the asphalt mixtures with higher fracture energies corresponded with pavements with lower amount of transverse cracking.Item Synthesis of Performance Testing of Asphalt Concrete(Minnesota Department of Transportation Research Services Section, 2011-09) Dave, Eshan; Koktan, Philip DaleAt present, like many other agencies, the Minnesota Department of Transportation asphalt material specifications rely primarily on volumetric properties to ensure good field performance. There have been considerable amounts of research efforts to develop so called “asphalt performance tests” that can link laboratory-measured parameters to pavement performance. Research efforts are also undertaken to refine the asphalt mix-design method so that laboratory tests and procedures can be incorporated into material specification. This research project explored availability of such tests, their suitability, and their use by other agencies.