Browsing by Author "Chase, Kevin D."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Colonization and reproduction of potential competitors with mountain pine beetle in baited logs of a new host for mountain pine beetle, jack pine(Forest Ecology and Management, 2021-10) Smith, Zach M.; Chase, Kevin D.; Takagi, Esturo; Kees, Aubree M.; Aukema, Brian H.The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a bark beetle that is native to pine forests of western North America and the Black Hills of South Dakota. Recent eastward range expansion into stands of jack pine (Pinus banksiana) and associated hybrids with lodgepole pine (Pinus contorta) in western Canada has created concern that the insect will continue moving eastward. In the Great Lakes region, mountain pine beetle would encounter novel species of pines and associated insect fauna; interactions with which are largely unexplored. We baited logs of jack pine with lures for mountain pine beetle and Ips grandicollis (Eichhoff) alone and in combination in a 2 × 2 factorial design in the Black Hills of South Dakota. Both insects occur in this region, but not jack pine, a common species in the Great Lakes region of North America at risk of invasion by mountain pine beetle. We measured attraction and reproduction of insects that colonized the logs. Ips grandicollis were significantly more attracted to logs of jack pine baited with their aggregation pheromone, ipsenol, than unbaited logs or those baited with pheromones of mountain pine beetle and myrcene, a host volatile. Colonization by I. grandicollis was inhibited by the presence of lures for mountain pine beetle. We also found larvae of longhorn borers, likely Monochamus spp., infesting logs. These borers, which act as competitors and facultative predators of bark beetles, were significantly attracted to logs baited with ipsenol over those baited with lures for mountain pine beetle. Our results suggest that if mountain pine beetle were to invade the Great Lakes Region, common bark and wood-boring species such as I. grandicollis and longhorn borers would not compete with mountain pine beetles at tree-colonizing stages, and thus could pose little resistance to invasion.Item Defensive response of evolutionarily naïve Pinus sylvestris to the mountain pine beetle fungal associate Grosmannia clavigera in comparison to Pinus ponderosa(Forest Ecology and Management, 2023-10) Chase, Kevin D.; Rynders, Kathryn J.; Maddox, Mitchell P.; Aukema, Brian H.Mountain pine beetle (MPB, Dendroctonus ponderosae) is a destructive pest of pine forests in western North America. This insect is currently expanding its range across the Canadian boreal forest towards eastern North America, where a suite of novel pine species will be encountered. One species of pine without prior association with MPB is Pinus sylvestris (Scots pine), which is native to Europe and naturalized in parts of central and eastern North America. Here, we take advantage of a unique opportunity in the Black Hills of South Dakota where an isolated, planted, and mature stand of P. sylvestris and native Pinus ponderosa (ponderosa pine) co-exist within the range of MPB. We conducted a punch-inoculation experiment to determine the chemical response of P. sylvestris from a blue-stain fungus associated with MPB, Grosmannia clavigera, and compared the response to that of P. ponderosa. We found that P. sylvestris had a higher localized monoterpene response than P. ponderosa in response to inoculation, but a lower sesquiterpene response. Among the significant monoterpenes associated with MPB behavior, limonene, 3-carene, and myrcene had a larger localized response in P. sylvestris than P. ponderosa; lower levels of 4-allylanisole were found in P. sylvestris. Fungal inoculation did not induce a stronger terpenoid response than mechanical wounding without inoculation, indicating that P. sylvestris responds to mechanical damage similarly as to fungal inoculation. Pinus sylvestris may provide one alternative plantation species for timber production in the Great Lakes Region following mountain pine beetle incursion, however, more evaluation is needed to determine the role of this species in future plantings.