Browsing by Author "Brummel, Benjamin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The Effect of α-Synuclein on Lipid Membrane Properties Characterized by Molecular Dynamics and Atomic Force Microscopy(2018-08) Brummel, BenjaminThe protein α-synuclein (αSyn), primarily recognized for its link to neurodegenerative disorders, has multiple reported functions. One well-established role of αSyn is its ability to bind and remodel lipid membranes. This ability has been characterized in synthetic lipid bilayers and has been observed both in cellular and in vivo models. The native environment of αSyn—the presynaptic terminal of neurons—contains mitochondria and synaptic vesicles, which have unique membranes that differ from previously studied models. The goal of this dissertation was to characterize how lipids enriched in synaptic vesicles and mitochondria affect how αSyn changes membrane properties. First, molecular dynamics (MD) simulations of synaptic vesicle-mimic bilayers showed how lipids with polyunsaturated fatty acids modify membrane properties and interact with αSyn. Next, tubulation experiments were combined with MD simulations to explore how αSyn remodels bilayers containing cardiolipin and phosphatidylethanolamine, two lipids enriched in mitochondria. Finally, methods were developed to characterize lipid vesicle mechanical properties using pulsed force mode (PFM) atomic force microscopy (AFM). This work provides insight into the specifics of how αSyn affects the properties of synaptic vesicle and mitochondrial membranes and demonstrates how PFM-AFM can identify the mechanical properties of lipid vesicles.Item Polyunsaturated chains in asymmetric lipids disorder raft mixtures and preferentially associate with α-Synuclein(2018-08) Brummel, BenjaminUsing molecular dynamics simulations, we have explored the effect of asymmetric lipids—specifically those that contain one polyunsaturated (PUFA) and one saturated fatty acid chain—on phase separation in heterogeneous membranes. These lipids are prevalent in neuronal membranes, particularly in synaptic membranes, where the Parkinson’s disease protein α-synuclein (αS) is found. We have therefore explored the relationship between asymmetric, PUFA-containing lipids, and αS. The simulations show that asymmetric lipids partition to the liquid disordered (Ld) phase of canonical raft mixtures because of the highly disordered PUFA chain. In the case of a membrane built to mimic the lipid composition of a synaptic vesicle, the PUFA-containing asymmetric lipids completely disrupt phase separation. Because αS is positively charged, we show that it partitions with negatively charged lipids, regardless of the saturation state of the chains. Additionally, αS preferentially associates with the polyunsaturated fatty acid tails of both charged and neutral lipids. This is a consequence of those chains’ ability to accommodate the void beneath the amphipathic helix.